COL111: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Error Correcting Codes

Error Correcting Codes

Erasure Codes using Polynomials

Problem

Alice wants to send a sequence of integers $m_{1}, m_{2}, \ldots, m_{n}$ to Bob over a faulty communication channel that may drop at most k of the numbers sent by Alice. Assume that $\forall i, x_{i} \in\{0,1, \ldots, q-1\}$ for some integer $q \geq n+k$. Suggest a method for Alice to communicate her message to Bob.

Error Correcting Codes

Erasure Codes using Polynomials

Problem

Alice wants to send a sequence of integers $m_{1}, m_{2}, \ldots, m_{n}$ to Bob over a faulty communication channel that may drop at most k of the numbers sent by Alice. Assume that $\forall i, x_{i} \in\{0,1, \ldots, q-1\}$ for some integer $q \geq n+k$. Suggest a method for Alice to communicate her message to Bob.

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of$ degree $(n-1)$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}$,
- $P(2)(\bmod q)=m_{2}$,
- $P(3)(\bmod q)=m_{3}$,
- $P(4)(\bmod q)=m_{4}$.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of$ degree $(n-1)$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}, P(2)(\bmod q)=m_{2}, P(3)(\bmod q)=m_{3}, P(4)(\bmod q)=m_{4}$.
- $P(x)=x^{3}+4 x^{2}+5$ is such a polynomial.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of degree$ $(n-1)$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}, P(2)(\bmod q)=m_{2}, P(3)(\bmod q)=m_{3}, P(4)(\bmod q)=m_{4}$.
- $P(x)=x^{3}+4 x^{2}+5$ is such a polynomial.
- Alice sends $P(1)(\bmod q)|P(2)(\bmod q)| P(3)(\bmod q)|P(4)(\bmod q)| P(5)(\bmod q) \mid P(6)(\bmod q)$ to Bob.
- So, Alice sends $3|1| 5|0| 6 \mid 1$ to Bob.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

3	1	5	0	6	1

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of degree$ $(n-1)$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}, P(2)(\bmod q)=m_{2}, P(3)(\bmod q)=m_{3}, P(4)(\bmod q)=m_{4}$.
- $P(x)=x^{3}+4 x^{2}+5$ is such a polynomial.
- Alice sends $P(1)(\bmod q)|P(2)(\bmod q)| P(3)(\bmod q)|P(4)(\bmod q)| P(5)(\bmod q) \mid P(6)(\bmod q)$ to Bob.
- So, Alice sends $3|1| 5|0| 6 \mid 1$ to Bob.
- Claim 2: Even if any two messages are dropped, Bob can figure out the message that Alice wanted to communicate.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of degree$ $\overline{(n-1)}$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}, P(2)(\bmod q)=m_{2}, P(3)(\bmod q)=m_{3}, P(4)(\bmod q)=m_{4}$.
- $P(x)=x^{3}+4 x^{2}+5$ is such a polynomial.
- Alice sends $P(1)(\bmod q)|P(2)(\bmod q)| P(3)(\bmod q)|P(4)(\bmod q)| P(5)(\bmod q) \mid P(6)(\bmod q)$ to Bob.
- So, Alice sends $3|1| 5|0| 6 \mid 1$ to Bob.
- Claim 2: Even if any two messages are dropped, Bob can figure out the message that Alice wanted to communicate.
- In the above case, Bob finds the unique polynomial Q (.) s.t.
$Q(1)(\bmod q)=3, Q(3)(\bmod q)=5, Q(4)(\bmod q)=0, Q(5)(\bmod q)=6$ and then
outputs $Q(1)(\bmod q)|Q(2)(\bmod q)| Q(3)(\bmod q) \mid Q(4)(\bmod q)$.

Polynomials

Properties of Polynomials

- A univariate (one variable) polynomial of degree d is of the form $p(x)=a_{d} x^{d-1}+a_{d-1} x^{d-1}+\ldots+a_{0}$, where x and coefficients a_{i} 's are real numbers.
- A real number a is said to be a root of a polynomial $p(x)$ iff $p(a)=0$.

Properties of Polynomials

- A univariate (one variable) polynomial of degree d is of the form $p(x)=a_{d} x^{d-1}+a_{d-1} x^{d-1}+\ldots+a_{0}$, where x and coefficients a_{i} 's are real numbers.
- A real number a is said to be a root of a polynomial $p(x)$ iff $p(a)=0$.

Theorem

A non-zero polynomial of degree d has at most d roots.

Properties of Polynomials

- A univariate (one variable) polynomial of degree d is of the form $p(x)=a_{d} x^{d-1}+a_{d-1} x^{d-1}+\ldots+a_{0}$, where x and coefficients a_{i} 's are real numbers.
- A real number a is said to be a root of a polynomial $p(x)$ iff $p(a)=0$.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

Proof.

- Find a polynomial $p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0}$ such that $p\left(x_{i}\right)=y_{i}$ for all i.
- This can be done by solving the following system:

$$
\left(\begin{array}{ccccc}
x_{1}^{d} & x_{1}^{d-1} & \ldots & x_{1} & 1 \\
x_{2}^{d} & x_{2}^{d-1} & \ldots & x_{2} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{d+1}^{d} & x_{d+1}^{d-1} & \ldots & x_{d+1} & 1
\end{array}\right) \times\left(\begin{array}{c}
a_{d} \\
a_{d-1} \\
\vdots \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right)
$$

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

Proof.

- Find a polynomial $p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0}$ such that $p\left(x_{i}\right)=y_{i}$ for all i.
- This can be done by solving the following system:

$$
\left(\begin{array}{ccccc}
x_{1}^{d} & x_{1}^{d-1} & \ldots & x_{1} & 1 \\
x_{2}^{d} & x_{2}^{d-1} & \ldots & x_{2} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{d+1}^{d} & x_{d+1}^{d-1} & \ldots & x_{d+1} & 1
\end{array}\right) \times\left(\begin{array}{c}
a_{d} \\
a_{d-1} \\
\vdots \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right)
$$

- Is the above matrix invertible?

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j$), there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

Proof.

- Find a polynomial $p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0}$ such that $p\left(x_{i}\right)=y_{i}$ for all i.
- This can be done by solving the following system:

$$
\left(\begin{array}{ccccc}
x_{1}^{d} & x_{1}^{d-1} & \ldots & x_{1} & 1 \\
x_{2}^{d} & x_{2}^{d-1} & \ldots & x_{2} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{d+1}^{d} & x_{d+1}^{d-1} & \ldots & x_{d+1} & 1
\end{array}\right) \times\left(\begin{array}{c}
a_{d} \\
a_{d-1} \\
\vdots \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right)
$$

- Is the above matrix invertible?
- Yes, since the determinant $\left(=\prod_{i>j}\left(x_{i}-x_{j}\right)\right)$ is non-zero as long as $x_{1}, x_{2}, \ldots, x_{d+1}$ are distinct.
- What about uniqueness?
- Suppose there is another polynomial $q(x) \neq p(x)$ such that $\forall i, q\left(x_{i}\right)=y_{i}$. But then $r(x)=p(x)-q(x)$ is a degree d polynomial with $d+1$ roots.

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- For all i define the polynomial $\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}$.
- Claim: The unique degree d polynomial in the above theorem is given by $p(x)=\sum_{i} y_{i} \cdot \Delta_{i}(x)$.

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- For all i define the polynomial $\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}$.
- Claim: The unique degree d polynomial in the above theorem is given by $p(x)=\sum_{i} y_{i} \cdot \Delta_{i}(x)$.
- Suppose we are given $(1,3),(2,1),(3,5),(4,0)$, then the degree 3 polynomial that "fits" these pairs is given by:

$$
\begin{aligned}
p(x)= & \frac{3(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}+\frac{1(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}+ \\
& \frac{5(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}+\frac{0(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}
\end{aligned}
$$

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- For all i define the polynomial $\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}$.
- Claim: The unique degree d polynomial in the above theorem is given by $p(x)=\sum_{i} y_{i} \cdot \Delta_{i}(x)$.
- Suppose we are given $(1,3),(2,1),(3,5),(4,0)$, then the degree 3 polynomial that "fits" these pairs is given by:

$$
\begin{aligned}
p(x)= & \frac{(x-2)(x-3)(x-4)}{-2}+\frac{(x-1)(x-3)(x-4)}{2}+ \\
& \frac{5(x-1)(x-2)(x-4)}{-2} .
\end{aligned}
$$

Properties of Polynomials

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- For all i define the polynomial $\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}$.
- Claim: The unique degree d polynomial in the above theorem is given by $p(x)=\sum_{i} y_{i} \cdot \Delta_{i}(x)$.
- This method of "fitting" a polynomial is known as Lagrange interpolation.

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers?

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be complex numbers?

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be complex numbers? Yes.

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be complex numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be rational numbers?

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be complex numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be rational numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be integers?

Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq d+1$.

- Do both the above theorems hold when the variable x and all coefficients are restricted to be real numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be complex numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be rational numbers? Yes.
- Do both the above theorems hold when the variable x and all coefficients are restricted to be integers? No.

Properties of Polynomials

- Let $q>1$ be some prime number.
- Consider polynomials where the variable x and coefficients can only take values from the set $\{0, \ldots, q-1\}$.
- All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)(\bmod q)=y_{i}$ for $1 \leq i \leq d+1$.

- Do the above theorems hold?

Properties of Polynomials

- Let $q>1$ be some prime number.
- Consider polynomials where the variable x and coefficients can only take values from the set $\{0, \ldots, q-1\}$.
- All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)(\bmod q)=y_{i}$ for $1 \leq i \leq d+1$.

- Do the above theorems hold? Yes.
- Where did we use the fact that q is a prime number?

Properties of Polynomials

- Let $q>1$ be some prime number.
- Consider polynomials where the variable x and coefficients can only take values from the set $\{0, \ldots, q-1\}$.
- All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given $(d+1)$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)\left(x_{i} \neq x_{j}\right.$ for $i \neq j)$, there is a unique polynomial $p(x)$ of degree d such that $p\left(x_{i}\right)(\bmod q)=y_{i}$ for $1 \leq i \leq d+1$.

- Do the above theorems hold? Yes.
- Where did we use the fact that q is a prime number?
- The set $\{0,1, \ldots, q-1\}$ for prime q along with addition and multiplication modulo q is something known as a Finite Field. This is useful in a lot of areas of computer science.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Idea using polynomials:
- Claim 1: Alice can find the unique univariate polynomial $P($.$) of degree$ $\overline{(n-1)}$ with coefficients in $\{0,1, \ldots, q-1\}$ s.t.
- $P(1)(\bmod q)=m_{1}, P(2)(\bmod q)=m_{2}, P(3)(\bmod q)=m_{3}, P(4)(\bmod q)=m_{4}$.
- $P(x)=x^{3}+4 x^{2}+5$ is such a polynomial.
- Alice sends $P(1)(\bmod q)|P(2)(\bmod q)| P(3)(\bmod q)|P(4)(\bmod q)| P(5)(\bmod q) \mid P(6)(\bmod q)$ to Bob.
- So, Alice sends $3|1| 5|0| 6 \mid 1$ to Bob.
- Claim 2: Even if any two messages are dropped, Bob can figure out the message that Alice wanted to communicate.
- In the above case, Bob finds the unique polynomial Q (.) s.t.
$Q(1)(\bmod q)=3, Q(3)(\bmod q)=5, Q(4)(\bmod q)=0, Q(5)(\bmod q)=6$ and then
outputs $Q(1)(\bmod q)|Q(2)(\bmod q)| Q(3)(\bmod q) \mid Q(4)(\bmod q)$.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

3	1	5	0	6	1

- Use Lagrange interpolation to determine the polynomial that Alice uses.
- We know $P(1)(\bmod 7)=3, P(2)(\bmod 7)=1, P(3)(\bmod 7)=5, P(4)(\bmod 7)=0$.
- $Q(x)=\frac{3 \cdot(x-2)(x-3)(x-4)}{-6}+\frac{1 \cdot(x-1)(x-3)(x-4)}{2}+\frac{5 \cdot(x-1)(x-2)(x-4)}{-2}$
- $Q(x) \equiv 3 \cdot(x-2)(x-3)(x-4)+4 \cdot(x-1)(x-3)(x-4)+1 \cdot(x-1)(x-2)(x-4)(\bmod 7)$.
- $Q(x) \equiv\left(x^{3}+4 x^{2}+5\right)(\bmod 7)$.
- So, $P(x)=x^{3}+4 x^{2}+5$.

Error Correcting Codes

Erasure Codes using Polynomials

- Let $n=4, k=2, q=7$.
- Let $m_{1}=3, m_{2}=1, m_{3}=5, m_{4}=0$. So, Alice wants to send the message $3|1| 5 \mid 0$.

- Use Lagrange interpolation to determine the polynomial that Alice uses.
- Use Lagrange interpolation to determine the polynomial that Bob reconstructs.

Secret Sharing

Secret Sharing

- Suppose there is a super secret key s and this key may be used to fire Nuclear missiles.
- You cannot entrust any single person with this key.
- Ideally, you would want to split this key s into n parts and give each part to a responsible person with the following two properties:
- If any k (or more) people get together, then they can reconstruct the key s.
- Less than k people cannot reconstruct s using their shares.

Secret Sharing

- Suppose there is a super secret key s and this key may be used to fire Nuclear missiles.
- You cannot entrust any single person with this key.
- Ideally, you would want to split this key s into n parts and give each part to a responsible person with the following two properties:
- If any k (or more) people get together, then they can reconstruct the key s.
- Less than k people cannot reconstruct s using their shares.
- Idea using (finite field) polynomials:
- Pick a large prime $q \gg s, n$.
- Pick a random polynomial of degree $(k-1)$ such that
$P(0)(\bmod q)=s$ and give
$P(1)(\bmod q), P(2)(\bmod q), \ldots, P(n)(\bmod q)$ as shares to n people.

End

