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Error Correcting Codes
Erasure Codes using Polynomials

Problem

Alice wants to send a sequence of integers m1,m2, ...,mn to Bob
over a faulty communication channel that may drop at most k of
the numbers sent by Alice. Assume that ∀i , xi ∈ {0, 1, ..., q − 1}
for some integer q ≥ n + k . Suggest a method for Alice to
communicate her message to Bob.
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Error Correcting Codes
Erasure Codes using Polynomials

Problem

Alice wants to send a sequence of integers m1,m2, ...,mn to Bob
over a faulty communication channel that may drop at most k of
the numbers sent by Alice. Assume that ∀i , xi ∈ {0, 1, ..., q − 1}
for some integer q ≥ n + k . Suggest a method for Alice to
communicate her message to Bob.

Let n = 4, k = 2, q = 7.

Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to
send the message 3|1|5|0.

Ragesh Jaiswal, CSE, IIT Delhi COL111: Discrete Mathematical Structures



Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send
the message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of
degree (n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1,
P(2) (mod q) = m2,
P(3) (mod q) = m3,
P(4) (mod q) = m4.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send
the message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of
degree (n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1, P(2) (mod q) = m2, P(3) (mod q) = m3, P(4) (mod q) = m4.
P(x) = x3 + 4x2 + 5 is such a polynomial.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of degree
(n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1, P(2) (mod q) = m2, P(3) (mod q) = m3, P(4) (mod q) = m4.
P(x) = x3 + 4x2 + 5 is such a polynomial.

Alice sends P(1) (mod q)|P(2) (mod q)|P(3) (mod q)|P(4) (mod q)|P(5) (mod q)|P(6) (mod q) to
Bob.

So, Alice sends 3|1|5|0|6|1 to Bob.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of degree
(n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1, P(2) (mod q) = m2, P(3) (mod q) = m3, P(4) (mod q) = m4.
P(x) = x3 + 4x2 + 5 is such a polynomial.

Alice sends P(1) (mod q)|P(2) (mod q)|P(3) (mod q)|P(4) (mod q)|P(5) (mod q)|P(6) (mod q) to
Bob.

So, Alice sends 3|1|5|0|6|1 to Bob.

Claim 2: Even if any two messages are dropped, Bob can figure out the
message that Alice wanted to communicate.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of degree
(n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1, P(2) (mod q) = m2, P(3) (mod q) = m3, P(4) (mod q) = m4.
P(x) = x3 + 4x2 + 5 is such a polynomial.

Alice sends P(1) (mod q)|P(2) (mod q)|P(3) (mod q)|P(4) (mod q)|P(5) (mod q)|P(6) (mod q) to
Bob.

So, Alice sends 3|1|5|0|6|1 to Bob.

Claim 2: Even if any two messages are dropped, Bob can figure out the
message that Alice wanted to communicate.

In the above case, Bob finds the unique polynomial Q(.) s.t.
Q(1) (mod q) = 3,Q(3) (mod q) = 5,Q(4) (mod q) = 0,Q(5) (mod q) = 6 and then
outputs Q(1) (mod q)|Q(2) (mod q)|Q(3) (mod q)|Q(4) (mod q).
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Polynomials
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Properties of Polynomials

A univariate (one variable) polynomial of degree d is of the
form p(x) = adxd−1 + ad−1xd−1 + ... + a0, where x and
coefficients ai ’s are real numbers.

A real number a is said to be a root of a polynomial p(x) iff
p(a) = 0.
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Properties of Polynomials

A univariate (one variable) polynomial of degree d is of the
form p(x) = adxd−1 + ad−1xd−1 + ... + a0, where x and
coefficients ai ’s are real numbers.

A real number a is said to be a root of a polynomial p(x) iff
p(a) = 0.

Theorem

A non-zero polynomial of degree d has at most d roots.
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Properties of Polynomials

A univariate (one variable) polynomial of degree d is of the
form p(x) = adxd−1 + ad−1xd−1 + ... + a0, where x and
coefficients ai ’s are real numbers.

A real number a is said to be a root of a polynomial p(x) iff
p(a) = 0.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.
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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Proof.

Find a polynomial p(x) = adxd + ad−1xd−1 + ... + a0 such
that p(xi ) = yi for all i .

This can be done by solving the following system:
xd
1 xd−1

1 . . . x1 1

xd
2 xd−1

2 . . . x2 1
...

...
...

...
...

xd
d+1 xd−1

d+1 . . . xd+1 1

×


ad
ad−1

...
a0

 =


y1
y2
...

yd+1


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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Proof.

Find a polynomial p(x) = adxd + ad−1xd−1 + ... + a0 such
that p(xi ) = yi for all i .

This can be done by solving the following system:
xd
1 xd−1

1 . . . x1 1

xd
2 xd−1

2 . . . x2 1
...

...
...

...
...

xd
d+1 xd−1

d+1 . . . xd+1 1

×


ad
ad−1

...
a0

 =


y1
y2
...

yd+1


Is the above matrix invertible?
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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Proof.

Find a polynomial p(x) = adxd + ad−1xd−1 + ... + a0 such
that p(xi ) = yi for all i .
This can be done by solving the following system:

xd
1 xd−1

1 . . . x1 1

xd
2 xd−1

2 . . . x2 1
...

...
...

...
...

xd
d+1 xd−1

d+1 . . . xd+1 1

×


ad
ad−1

...
a0

 =


y1
y2
...

yd+1


Is the above matrix invertible?

Yes, since the determinant (=
∏

i>j(xi − xj)) is non-zero as
long as x1, x2, ..., xd+1 are distinct.

What about uniqueness?

Suppose there is another polynomial q(x) 6= p(x) such that
∀i , q(xi ) = yi . But then r(x) = p(x)− q(x) is a degree d
polynomial with d + 1 roots.
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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

For all i define the polynomial ∆i (x) =
∏

j 6=i (x−xj )∏
j 6=i (xi−xj )

.

Claim: The unique degree d polynomial in the above theorem
is given by p(x) =

∑
i yi ·∆i (x).

Ragesh Jaiswal, CSE, IIT Delhi COL111: Discrete Mathematical Structures



Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

For all i define the polynomial ∆i (x) =
∏

j 6=i (x−xj )∏
j 6=i (xi−xj )

.

Claim: The unique degree d polynomial in the above theorem
is given by p(x) =

∑
i yi ·∆i (x).

Suppose we are given (1, 3), (2, 1), (3, 5), (4, 0), then the
degree 3 polynomial that “fits” these pairs is given by:

p(x) =
3(x − 2)(x − 3)(x − 4)

(1− 2)(1− 3)(1− 4)
+

1(x − 1)(x − 3)(x − 4)

(2− 1)(2− 3)(2− 4)
+

5(x − 1)(x − 2)(x − 4)

(3− 1)(3− 2)(3− 4)
+

0(x − 1)(x − 2)(x − 3)

(4− 1)(4− 2)(4− 3)
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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

For all i define the polynomial ∆i (x) =
∏

j 6=i (x−xj )∏
j 6=i (xi−xj )

.

Claim: The unique degree d polynomial in the above theorem
is given by p(x) =

∑
i yi ·∆i (x).

Suppose we are given (1, 3), (2, 1), (3, 5), (4, 0), then the
degree 3 polynomial that “fits” these pairs is given by:

p(x) =
(x − 2)(x − 3)(x − 4)

−2
+

(x − 1)(x − 3)(x − 4)

2
+

5(x − 1)(x − 2)(x − 4)

−2
.
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Properties of Polynomials

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

For all i define the polynomial ∆i (x) =
∏

j 6=i (x−xj )∏
j 6=i (xi−xj )

.

Claim: The unique degree d polynomial in the above theorem
is given by p(x) =

∑
i yi ·∆i (x).

This method of “fitting” a polynomial is known as Lagrange
interpolation.

Ragesh Jaiswal, CSE, IIT Delhi COL111: Discrete Mathematical Structures



Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers?
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Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be complex numbers?
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Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be complex numbers? Yes.
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Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be complex numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be rational numbers?
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Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be complex numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be rational numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be integers?
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Properties of Polynomials

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) = yi for 1 ≤ i ≤ d + 1.

Do both the above theorems hold when the variable x and all
coefficients are restricted to be real numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be complex numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be rational numbers? Yes.
Do both the above theorems hold when the variable x and all
coefficients are restricted to be integers? No.
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Properties of Polynomials

Let q > 1 be some prime number.
Consider polynomials where the variable x and coefficients can
only take values from the set {0, ..., q − 1}.
All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) (mod q) = yi for 1 ≤ i ≤ d + 1.

Do the above theorems hold?
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Properties of Polynomials

Let q > 1 be some prime number.
Consider polynomials where the variable x and coefficients can
only take values from the set {0, ..., q − 1}.
All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) (mod q) = yi for 1 ≤ i ≤ d + 1.

Do the above theorems hold? Yes.
Where did we use the fact that q is a prime number?
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Properties of Polynomials

Let q > 1 be some prime number.
Consider polynomials where the variable x and coefficients can
only take values from the set {0, ..., q − 1}.
All arithmetic operations are performed modulo q.

Theorem

A non-zero polynomial of degree d has at most d roots.

Theorem

Given (d + 1) pairs (x1, y1), (x2, y2), ..., (xd+1, yd+1) (xi 6= xj for
i 6= j), there is a unique polynomial p(x) of degree d such that
p(xi ) (mod q) = yi for 1 ≤ i ≤ d + 1.

Do the above theorems hold? Yes.
Where did we use the fact that q is a prime number?
The set {0, 1, ..., q − 1} for prime q along with addition and
multiplication modulo q is something known as a Finite Field.
This is useful in a lot of areas of computer science.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Idea using polynomials:
Claim 1: Alice can find the unique univariate polynomial P(.) of degree
(n − 1) with coefficients in {0, 1, ..., q − 1} s.t.

P(1) (mod q) = m1, P(2) (mod q) = m2, P(3) (mod q) = m3, P(4) (mod q) = m4.
P(x) = x3 + 4x2 + 5 is such a polynomial.

Alice sends P(1) (mod q)|P(2) (mod q)|P(3) (mod q)|P(4) (mod q)|P(5) (mod q)|P(6) (mod q) to
Bob.

So, Alice sends 3|1|5|0|6|1 to Bob.

Claim 2: Even if any two messages are dropped, Bob can figure out the
message that Alice wanted to communicate.

In the above case, Bob finds the unique polynomial Q(.) s.t.
Q(1) (mod q) = 3,Q(3) (mod q) = 5,Q(4) (mod q) = 0,Q(5) (mod q) = 6 and then
outputs Q(1) (mod q)|Q(2) (mod q)|Q(3) (mod q)|Q(4) (mod q).
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Use Lagrange interpolation to determine the polynomial that Alice
uses.

We know P(1) (mod 7) = 3, P(2) (mod 7) = 1, P(3) (mod 7) = 5, P(4) (mod 7) = 0.
Q(x) =

3·(x−2)(x−3)(x−4)
−6

+
1·(x−1)(x−3)(x−4)

2
+

5·(x−1)(x−2)(x−4)
−2

Q(x) ≡ 3 · (x − 2)(x − 3)(x − 4) + 4 · (x − 1)(x − 3)(x − 4) + 1 · (x − 1)(x − 2)(x − 4) (mod 7).
Q(x) ≡ (x3 + 4x2 + 5) (mod 7).
So, P(x) = x3 + 4x2 + 5.
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Error Correcting Codes
Erasure Codes using Polynomials

Let n = 4, k = 2, q = 7.
Let m1 = 3, m2 = 1, m3 = 5, m4 = 0. So, Alice wants to send the
message 3|1|5|0.

Use Lagrange interpolation to determine the polynomial that Alice
uses.
Use Lagrange interpolation to determine the polynomial that Bob
reconstructs.
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Secret Sharing
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Secret Sharing

Suppose there is a super secret key s and this key may be
used to fire Nuclear missiles.
You cannot entrust any single person with this key.
Ideally, you would want to split this key s into n parts and
give each part to a responsible person with the following two
properties:

If any k (or more) people get together, then they can
reconstruct the key s.
Less than k people cannot reconstruct s using their shares.
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Secret Sharing

Suppose there is a super secret key s and this key may be used to
fire Nuclear missiles.
You cannot entrust any single person with this key.
Ideally, you would want to split this key s into n parts and give
each part to a responsible person with the following two
properties:

If any k (or more) people get together, then they can reconstruct
the key s.
Less than k people cannot reconstruct s using their shares.

Idea using (finite field) polynomials:

Pick a large prime q >> s, n.
Pick a random polynomial of degree (k − 1) such that
P(0) (mod q) = s and give
P(1) (mod q),P(2) (mod q), ...,P(n) (mod q) as shares to n
people.
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End
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