
CS 70 Discrete Mathematics for CS
Fall 2006 Papadimitriou & Vazirani Lecture 11

Polynomials
Recall from your high school math that a polynomial in a single variable is of the formp(x) = adxd +
ad−1xd−1 + . . . + a0. Here the variablex and the coefficientsai are usually real numbers. For example,
p(x) = 5x3 +2x+1, is a polynomial of degreed = 3. Its coefficients area3 = 5, a2 = 0, a1 = 2, anda0 = 1.
Polynomials have some remarkably simple, elegant and powerful properties, which we will explore in this
lecture.

First, a definition: we say thata is a root of the polynomialp(x) if p(a) = 0. For example, the degree
2 polynomial p(x) = x2 − 4 has two roots, namely 2 and−2, sincep(2) = p(−2) = 0. If we plot the
polynomialp(x) in thex-y plane, then the roots of the polynomial are just the places where the curve crosses
thex axis:

Property 1: A non-zero polynomial of degreed has at mostd roots.

Property 2: Given d + 1 pairs(x1,y1), . . . ,(xd+1,yd+1), there is a unique polynomialp(x) of degree (at
most)d such thatp(xi) = yi for 1≤ i ≤ d+1.

Let us consider what these two properties say in the case thatd = 1. A graph of a linear (degree 1) polynomial
y = a1x+a0 is a line. Property 1 says that if a line is not thex-axis (i.e. if the polynomial is noty = 0), then
it can intersect thex-axis in at most one point.
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Property 2 says that two points uniquely determine a line.

Polynomial Interpolation

Property 2 says that two points uniquely determine a degree 1polynomial (a line), three points uniquely
determine a degree 2 polynomial, four points uniquely determine a degree 3 polynomial, ... Givend + 1
pairs(x1,y1), . . . ,(xd+1,yd+1), how do we determine a polynomialp(x) = adxd + . . . + a1x+ a0 such that
p(xi) = yi for i = 1 tod+1. We will give two different efficient algorithms for reconstructing the coefficients
a0, . . . ,ad and therefore the polynomialp(x).

In the first method, we write a system ofd + 1 linear equations ind + 1 variables: the coefficients of the
polynomiala0, . . . ,ad. Thei-th equation is:adxd

i +ad−1xd−1
i + . . .+a0 = yi.

Sincexi andyi are constants, this is a linear equation in thed+ 1 unknownsa0, . . . ,ad. Now solving these
equations gives the coefficients of the polynomialp(x). For example, given the 3 pairs(−1,2), (0,1), and
(2,5), we will construct the degree 2 polynomialp(x) which goes through these points. The first equation
saysa2(−1)2 +a1(−1)+a0 = 2. Simplifying, we geta2−a1+a0 = 2. Applying the same technique to the
second and third equations, we get the following system of equations:

a2−a1+a0 = 2

a0 = 1

4a2 +2a1 +a0 = 5

Substituting fora0 and multiplying the first equation by 2 we get:

2a2−2a1 = 2

4a2 +2a1 = 4

Then, adding down we find that 6a2 = 6, soa2 = 1, and plugging back in we find thata1 = 0. Thus, we have
determined the polynomialp(x) = x2+1. To do this method more carefully, we must show that the equations
do have a solution and that it is unique. This involves showing that a certain determinant is non-zero. We
will leave that as an exercise, and turn to the second method.

The second method is calledLagrange interpolation: Let us start by solving an easier problem. Suppose
that we are told thaty1 = 1 andy j = 0 for 2≤ j ≤ d+ 1. Now can we reconstructp(x)? Yes, this is easy!
Considerq(x) = (x−x2)(x−x3) · · · (x−xd+1). This is a polynomial of degreed (thexi ’s are constants, and
x appearsd times).q(x j ) = 0 for 2≤ j ≤ d+1. But what isq(x1)? q(x1) = (x1−x2)(x1−x3) · · · (x1−xd+1),
which is some constant not equal to 0. Thus if we letp(x) = q(x)/q(x1) (dividing is ok sinceq(x1) 6= 0), we
have the polynomial we are looking for. For example, supposeyou were given the pairs(1,1), (2,0), and
(3,0). Then we can construct the degreed = 2 polynomialp(x) by lettingq(x) = (x−2)(x−3) = x2−5x+6,
andq(x1) = q(1) = 2. Thus, we can now constructp(x) = q(x)/q(x1) = (x2−5x+6)/2.

Of course the problem is no harder if we single out some arbitrary indexi instead of 1: i.e.yi = 1 andy j = 0
for j 6= i. Let us introduce some notation: let us denote by∆i(x) the degreed polynomial that goes through

thesed+1 points. Then∆i(x) =
Π j 6=i(x−xj )
Π j 6=i(xi−xj )

.
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Let us now return to the original problem. Givend+1 pairs(x1,y1), . . . ,(xd+1,yd+1), we first construct the
d+ 1 polynomials∆1(x), . . . ,∆d+1(x). Now we can writep(x) = ∑d+1

i=1 yi∆i(x). Why does this work? First
notice thatp(x) is a polynomial of degreed as required, since it is the sum of polynomials of degreed. And
when it is evaluated atxi , d of thed+1 terms in the sum evaluate to 0 and thei-th term evaluates toyi times
1 as required.

If d = 2, andxi = i, for instance, then

∆1(x) =
(x−2)(x−3)

(1−2)(1−3)
=

(x−2)(x−3)

2

∆2(x) =
(x−1)(x−3)

(2−1)(2−3)
=

(x−1)(x−3)

−1

∆3(x) =
(x−1)(x−2)

(3−1)(3−2)
=

(x−1)(x−2)

2
.

Uniqueness

How do we show thatp(x) is the unique polynomial that satisfies thesed + 1 conditions? Suppose for
contradiction that there is another polynomialq(x) that satisfies thed+1 conditions as well. Now consider
the polynomialr(x) = p(x)−q(x). This is a non-zero polynomial of degreed. So by property 1 it can have
at mostd roots. But on the other handr(xi) = p(xi)− q(xi) = 0 on d + 1 distinct points. Contradiction.
Thereforep(x) is the unique polynomial that satisfies thed+1 conditions.

Property 1

Now let us turn to property 1. To prove this property we first show thata is a root ofp(x) iff (x−a) divides
p(x). The proof is simple: dividingp(x) by (x− a) gives p(x) = (x− a)q(x) + r(x), whereq(x) is the
quotient andr(x) is the remainder. The degree ofr(x) is necessarily smaller than the degree of the divisor
(x−a). Thereforer(x) must have degree 0 and therefore is some constantc. But now substitutingx = a,
we getp(a) = c. But sincea is a root,p(a) = 0. Thusc = 0 and thereforep(x) = (x−a)q(x), thus showing
that(x−a)|p(x).

Now suppose thata1, . . . ,ad ared distinct roots ofp(x). Let us show thatp(x) can have no other roots. We
will show thatp(x) = c(x−a1)(x−a2) · · · (x−ad). Now if p(a) = c(a−a1)(a−a2) · · · (a−ad) 6= 0 if a 6= ai

for all i.

To show thatp(x) = c(x−a1)(x−a2) · · · (x−ad), we start by observing thatp(x) = (x−a1)q1(x) for some
polynomialq1(x) of degreed− 1, sincea1 is a root. But now 0= p(a2) = (a2 − a1)q1(a2) sincea2 is a
root. But sincea2 − a1 6= 0, it follows thatq1(a2) = 0. Soq1(x) = (x− a2)q2(x), for some polynomial
q2(x) of degreed− 2. Proceeding in this manner by induction (do this formally!), we get thatp(x) =
(x−a1)(x−a2) · · · (x−ad)qd(x) for some polynomialqd(x) of degree 0, thus showing what we want. This
completes the proof that a polynomial of degreed has at mostd roots.

0.1 Finite Fields

Both property 1 and property 2 also hold when the values of thecoefficients and the variablex are chosen
from the complex numbers instead of the real numbers or even the rational numbers. They do not hold if the
values are restricted to being natural numbers or integers.Let us try to understand this a little more closely.
The only properties of numbers that we used in polynomial interpolation and in the proof of property 1 is
that we can add, subtract, multiply and divide any pair of numbers as long as we are not dividing by 0. We
cannot subtract two natural numbers and guarantee that the result is a natural number. And dividing two
integers does not usually result in an integer.
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But if we work with numbers modulo a primem, then we can add, subtract, multiply and divide (by any
non-zero number modulom). So both property 1 and property 2 hold if the coefficients and the variablex
are restricted to take on values modulom. This remarkable fact that these properties hold even when we
restrict ourselves to afinite set of values is the key to several applications that we will presently see. First,
let’s see examples of these properties holding in the case ofdegreed = 1 polynomials modulo 5. Consider
the polynomialp(x) = 4x+ 3 (mod 5). The roots of this polynomial are all valuesx such that 4x+ 3 ≡ 0
(mod 5) holds. Solving forx, we get that 4x ≡ 2 (mod 5), orx ≡ 3 (mod 5). Thus, we found only 1
root for a degree 1 polynomial. Now, given the points(0,3) and (1,2), we will reconstruct the degree 1
polynomial p(x) modulo 5. Using Lagrange interpolation, we get that∆1(x) = −(x− 1), and∆2(x) = x.
Thus,p(x) = (3)∆1(x)+ (2)∆2(x) = −x+3≡ 4x+3 (mod 5).

When we work with numbers modulo a primem, we are working over finite fields, denoted byFm or GFm

(for Galois Field). In order for a set to be called a field, it must satisfy certain axioms which are the building
blocks that allow for these amazing properties and others tohold. If you would like to learn more about fields
and the axioms which a set must satisfy, you can visit Wikipedia’s site and read the article on fields:http:
//en.wikipedia.org/wiki/Field %28mathematics%29. While you are there, you can also
read the article on Galois Fields and learn more about some ofits applications and elegant properties which
will not be covered in this lecture:http://en.wikipedia.org/wiki/Galois field. These
articles provide further insight into these incredible algebraic structures and discuss powerful facts which
are often taken for granted.

We said above that it is remarkable that properties 1 and 2 continue to hold when we restrict all values to
a finite set modulo a prime numberm. To see why this is remarkable let us see what the graph of a linear
polynomial (degree 1) looks like modulo 5. There are now only5 possible choices forx, and only 5 possible
choices fory. Consider the polynomialsp(x) = 2x+3 andq(x) = 3x−2 overGF5. We can represent these
polynomials on thex-y plane as follows:

Notice that these two “lines” intersect in exactly one point, even though the picture looks nothing at all like
lines in the Euclidean plane. Modulo 5, two lines can still intersect in at most one point, and that is thanks
to the properties of addition, subtraction, multiplication, and division modulo 5.

Counting

How many degree 2 polynomials are there modulom? This is easy; there are 3 coefficients, each of which
can take onmdistinct values for a total ofm3. Now suppose we are given three pairs(x1,y1),(x2,y2),(x3,y3),
then by property 2, there is a unique polynomial of degree 2 such thatp(xi) = yi for 1 ≤ i ≤ 3. Suppose
we were only given two pairs(x1,y1),(x2,y2); how many distinct degree 2 polynomials are there that go
through these two points? Here is a slick way of working this out. Fix anyx3, and notice that there are
exactlymchoices for fixingy3. Now with three points specified, by property 2 there is a unique polynomial
of degree 2 that goes through these three points. Since this is true for each of them ways of choosingy3, it
follows that there arem polynomials of degree at most 2 that go through 2 points, as shown below:
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What if you were only given one point? Well, there aremchoices for the second point, and for each of these
there are m choices for the third point, yieldingm2 polynomials of degree at most 2 that go through the point
given. A pattern begins to emerge, as is summarized in the following table:

Polynomials of degree≤ d overFm

# of points # of polynomials
d+1 1

d m
d−1 m2

...
...

d−k mk+1

The reason that we can now count the number of polynomials is because we are working over a finite field.
If we were working over an infinite field such as the rationals,there would be infinitely many polynomials
of degree d that can go through d points! Think of a line, whichhas degree one. If you were just given one
point, there would be infinitely many possibilities for the second point, each of which uniquely defines a
line.

Finally, you might wonder why we chosem to be a prime. Let us briefly consider what would go wrong
if we chosem not to be prime, for examplem= 6. Now we can no longer divide by 2 or 3. In the proof
of property 1, we asserted thatp(a) = c(a−a1)(a−a2) · · · (a−ad) 6= 0 if a 6= ai for all i. But if we were
working modulo 6, and ifa−a1 = 2 anda−a2 = 3, each non-zero, but(a−a1)(a−a2) = 2·3 = 0 mod 6.

Secret Sharing
In the late 1950’s and into the 1960’s, during the Cold War, President Dwight D. Eisenhower approved
instructions and authorized top commanding officers for theuse of nuclear weapons under very urgent
emergency conditions. Such measures were set up in order to defend the United States in case of an attack
in which there was not enough time to confer with the President and decide on an appropriate response. This
would allow for a rapid response in case of a Soviet attack on U.S. soil. This is a perfect situation in which
a secret sharing scheme could be used to ensure that a certainnumber of officials must come together in
order to successfully launch a nuclear strike, so that for example no single person has the power and control
over such a devastating and destructive weapon. Suppose theU.S. government finally decides that a nuclear
strike can be initiated only if at leastk > 1 major officials agree to it. We want to devise a scheme such that
(1) any group ofk of these officials can pool their information to figure out thelaunch code and initiate the
strike but (2) no group ofk−1 or fewer have any information about the launch code, even ifthey pool their
knowledge. For example, they should not learn whether the secret is odd or even, a prime number, divisible
by some numbera, or the secret’s least significant bit. How can we accomplishthis?
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Suppose that there aren officials indexed from 1 ton and the launch code is some natural numbers. Let q
be a prime number larger thann ands, where 0≤ s≤ q−1 —we will work overGF(q) from now on.

Now pick a random polynomialP of degreek− 1 such thatP(0) = s and give the shareP(1) to the first
official, P(2) to the second, . . . ,P(n) to thenth. Then

• Any k officials, having the values of the polynomial atk points, can use Lagrange interpolation to find
P, and once they know whatP is, they can computeP(0) = s to learn the secret.

• Any group ofk−1 officials has no information aboutP. All they know is that there is a polynomial of
degreek−1 passing through theirk−1 points such thatP(0) = s. However, for each possible value
P(0) = b, there is a unique polynomial that is consistent with the information of thek− 1 officials,
and satisfies the constraint thatP(0) = b.

Example. Suppose you are in charge of setting up a secret sharing scheme where you want to distribute
n = 5 shares to 5 people such that anyk = 3 or more people can figure out the secret, but 2 or fewer cannot.
Let’s say we are working overGF(7) and you randomly choose the polynomial of degreek−1= 2 : P(x) =
3x2 +5x+1 (here,P(0) = 1 = s, the secret). So you know everything there is to know about the secret and
the polynomial, but what about the people that receive the shares? Well, the shares handed out areP(1) = 2
to the first official,P(2) = 2 to the second,P(3) = 1 to the third,P(4) = 6 to the fourth, andP(5) = 3 to the
fifth official. Let’s say that officials 3, 4, and 5 get together(we expect them to be able to recover the secret).
Using Lagrange interpolation, they compute the following delta functions:

∆3(x) =
(x−4)(x−5)

(3−4)(3−5)
=

(x−4)(x−5)

2

∆4(x) =
(x−3)(x−5)

(4−3)(4−5)
=

(x−3)(x−5)

−1

∆5(x) =
(x−3)(x−4)

(5−3)(5−4)
=

(x−3)(x−4)

2
.

They then compute the polynomial overGF(7): P(x) = (1)∆3(x) + (6)∆4(x) + (3)∆5(x) = 3x2 + 5x+ 1
(verify the computation!). Now they simply computeP(0) and discover that the secret is 1.

Let’s see what happens if two officials try to get together, say persons 1 and 5. They both know that the
polynomial looks likeP(x) = a2x2 +a1x+s. They also know the following equations:

P(1) = a2 +a1 +s= 2

P(5) = 4a2 +5a1 +s= 3

But that is all they have, 2 equations with 3 unknowns, and thus they cannot find out the secret. This is
the case no matter which two officials get together. Notice that since we are working overGF(7), the two
people could’ve guessed the secret (0≤ s≤ 6) and constructed a unique degree 2 polynomial (by property
2). But the two people combined have the same chance of guessing what the secret is as they do individually.
This is important, as it implies that two people have no more information about the secret than one person
does.
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