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Polynomials

Recall from your high school math that a polynomial in a singariable is of the fornp(x) = agx® +
ag_1x4"1+ ... +ap. Here the variablec and the coefficients; are usually real numbers. For example,
p(x) = 5x% 4 2x+ 1, is a polynomial of degreg = 3. Its coefficients areg = 5,a, = 0,a; = 2, andag = 1.

Polynomials have some remarkably simple, elegant and polmoperties, which we will explore in this
lecture.

First, a definition: we say tha is a root of the polynomiap(x) if p(a) = 0. For example, the degree
2 polynomial p(x) = x> — 4 has two roots, namely 2 and2, sincep(2) = p(—2) = 0. If we plot the
polynomial p(x) in thex-y plane, then the roots of the polynomial are just the placesrevthe curve crosses
thex axis:

pixi=x>4

Property 1: A non-zero polynomial of degreghas at most roots.

Property 2: Givend+ 1 pairs(x1,y1),.-.,(Xd+1,Yd+1), there is a unique polynomigl(x) of degree (at
most)d such thatp(x) =y; for1 <i <d+1.

Let us consider what these two properties say in the casd that A graph of a linear (degree 1) polynomial
y=aiX+ag is a line. Property 1 says that if a line is not thaxis (i.e. if the polynomial is not = 0), then
it can intersect the-axis in at most one point.
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Property 2 says that two points uniquely determine a line.
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Polynomial Interpolation

Property 2 says that two points uniquely determine a degneelyhomial (a line), three points uniquely
determine a degree 2 polynomial, four points uniquely deitee a degree 3 polynomial, ... Giveryt 1
pairs (X1,Y1),. ., (Xd+1,Yd+1), how do we determine a polynomiglx) = agxd + ... 4+ a;x+ ag such that
p(x) =Yy fori=1tod-+ 1. We will give two different efficient algorithms for recdnscting the coefficients
ao, .. .,a4 and therefore the polynomiai(x).

In the first method, we write a system of+ 1 linear equations i + 1 variables: the coefficients of the
polynomialay,...,a4. Thei-th equation iSBdXid + adflxid‘l +...+a =Y.

Sincex; andy; are constants, this is a linear equation indhe 1 unknownsag, . ..,ay. Now solving these
equations gives the coefficients of the polynonpét). For example, given the 3 paifs-1,2), (0,1), and
(2,5), we will construct the degree 2 polynomia{x) which goes through these points. The first equation
saysay(—1)? +ay(—1) +ag = 2. Simplifying, we gety, — a; + ag = 2. Applying the same technique to the
second and third equations, we get the following system oagons:

pv—ayt+ap=2
a=1
day, +2a;+ay=>5
Substituting forag and multiplying the first equation by 2 we get:
2a0 — 21 =2
da,+2a; =4

Then, adding down we find thabf= 6, soa, = 1, and plugging back in we find that = 0. Thus, we have
determined the polynomigd(x) = x?+ 1. To do this method more carefully, we must show that the @ops
do have a solution and that it is unique. This involves shgwirat a certain determinant is non-zero. We
will leave that as an exercise, and turn to the second method.

The second method is calléggrange interpolation Let us start by solving an easier problem. Suppose
that we are told thay; = 1 andy; = 0 for 2< j <d+ 1. Now can we reconstrugi(x)? Yes, this is easy!
Considerg(x) = (X—X2)(X—X3) --- (X—Xg+1). This is a polynomial of degreg (the x;’s are constants, and

x appearsl times).q(xj) =0for2< j <d+1. Butwhatis(xy)? q(X1) = (X1 —X2) (X1 — X3) - - (X0 — Xd+1),
which is some constant not equal to 0. Thus if wepet) = q(x)/q(x1) (dividing is ok sinceg(x;) # 0), we
have the polynomial we are looking for. For example, suppasewere given the pair&l, 1), (2,0), and
(3,0). Then we can construct the degee 2 polynomialp(x) by lettingg(x) = (x—2)(x— 3) = x> —5x+6,
andq(x;) = q(1) = 2. Thus, we can now construptx) = q(x)/q(x1) = (x> —5x+6)/2.

Of course the problem is no harder if we single out some anyiindexi instead of 1: i.ey; = 1 andy; =0

for j #i. Let us introduce some notation: let us denoteAlx) the degreel polynomial that goes through
thesed + 1 points. Them\;(x) = %ﬁm
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Let us now return to the original problem. Givda- 1 pairs(x1,y1),..., (Xd+1,Yd+1), We first construct the
d 4 1 polynomialsA; (x),...,Aq.1(X). Now we can writep(x) = T 1yiA (x). Why does this work? First
notice thatp(x) is a polynomial of degred as required, since it is the sum of polynomials of degtea&nd
when it is evaluated at, d of thed + 1 terms in the sum evaluate to 0 and il term evaluates tg times
1 as required.

If d =2, andx =i, for instance, then

- 21—2)(1—3) 2
eSS maYs
eSS mAT

Uniqueness

How do we show thap(x) is the unique polynomial that satisfies thebke 1 conditions? Suppose for
contradiction that there is another polynonggk) that satisfies thd + 1 conditions as well. Now consider
the polynomialr (x) = p(x) — q(x). This is a non-zero polynomial of degrdeSo by property 1 it can have
at mostd roots. But on the other hamdx;) = p(x) — q(x) = 0 ond + 1 distinct points. Contradiction.
Thereforep(x) is the unique polynomial that satisfies tthe- 1 conditions.

Property 1

Now let us turn to property 1. To prove this property we firsiwhhata is a root ofp(x) iff (x—a) divides
p(x). The proof is simple: dividingp(x) by (x— a) gives p(x) = (x—a)q(x) + r(x), whereq(x) is the
quotient and (x) is the remainder. The degreerdk) is necessarily smaller than the degree of the divisor
(x—a). Thereforer(x) must have degree 0 and therefore is some constaBut now substituting« = a,

we getp(a) = c. But sinceais a root,p(a) = 0. Thusc = 0 and thereforg(x) = (x—a)q(x), thus showing
that (X — a)| p(x).

Now suppose tha;, . ..,aq ared distinct roots ofp(x). Let us show thap(x) can have no other roots. We
will show thatp(x) = c(x—a1)(X—a2)--- (x—aq). Nowif p(a) =c(a—az)(a—ap)--- (a—aq) #0if a# g
for all i.

To show thatp(x) = c(x—az)(X—ap) - - (X—ag), we start by observing thait(x) = (x— a;)q1(x) for some
polynomial g; (x) of degreed — 1, sincea; is a root. But now 0= p(ay) = (a — a1)q1(a2) Sinceay is a
root. But sinceay; —a; # 0, it follows thatqgi(az) = 0. Soqi(X) = (X — a2)gz2(x), for some polynomial
gz2(x) of degreed — 2. Proceeding in this manner by induction (do this formaJlyle get thatp(x) =
(x—ag)(x—ap)---(x—aq)qq(x) for some polynomiatyy(x) of degree 0, thus showing what we want. This
completes the proof that a polynomial of degdeleas at mostl roots.

0.1 Finite Fields

Both property 1 and property 2 also hold when the values ottedficients and the variabbeare chosen
from the complex numbers instead of the real numbers or éeerational numbers. They do not hold if the
values are restricted to being natural numbers or integetsus try to understand this a little more closely.
The only properties of numbers that we used in polynomiarpdlation and in the proof of property 1 is
that we can add, subtract, multiply and divide any pair of hara as long as we are not dividing by 0. We
cannot subtract two natural numbers and guarantee thaedlodt is a natural number. And dividing two
integers does not usually result in an integer.
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But if we work with numbers modulo a prinm, then we can add, subtract, multiply and divide (by any
non-zero number modulm). So both property 1 and property 2 hold if the coefficientd tre variablex

are restricted to take on values modufo This remarkable fact that these properties hold even when w
restrict ourselves to finite set of values is the key to several applications that we wikpntly see. First,
let’'s see examples of these properties holding in the cadegreed = 1 polynomials modulo 5. Consider
the polynomialp(x) = 4x+ 3 (mod 5). The roots of this polynomial are all valuesuch that #+3=0
(mod 5) holds. Solving fox, we get that #= 2 (mod 5), orx = 3 (mod 5). Thus, we found only 1
root for a degree 1 polynomial. Now, given the poif@s3) and (1,2), we will reconstruct the degree 1
polynomial p(x) modulo 5. Using Lagrange interpolation, we get thatx) = —(x— 1), andAz(X) = x.
Thus,p(x) = (3)A1(X) + (2)A2(X) = —x+ 3= 4x+ 3 (mod 5).

When we work with numbers modulo a primg we are working over finite fields, denoted By, or GFy,

(for Galois Field). In order for a set to be called a field, itshsatisfy certain axioms which are the building
blocks that allow for these amazing properties and othdmsith If you would like to learn more about fields
and the axioms which a set must satisfy, you can visit Wikigiedite and read the article on fields: t p:

/1 en.w ki pedi a. org/ wi ki / Fi el d%28mat hemati cs%®9. While you are there, you can also
read the article on Galois Fields and learn more about sornite applications and elegant properties which
will not be covered in this lectureht t p: // en. wi ki pedi a. or g/ wi ki / Gal oi sfield. These
articles provide further insight into these incredibleeddrpic structures and discuss powerful facts which
are often taken for granted.

We said above that it is remarkable that properties 1 and gntento hold when we restrict all values to
a finite set modulo a prime numbet. To see why this is remarkable let us see what the graph okarlin
polynomial (degree 1) looks like modulo 5. There are now @nppssible choices fo, and only 5 possible
choices fory. Consider the polynomialp(x) = 2x+ 3 andq(x) = 3x— 2 overGFs. We can represent these
polynomials on thex-y plane as follows:

4 . - pl:x:l: ™
T gl x
2+ .
1T+ = "

o B
Ol 1 2 3 4

Notice that these two “lines” intersect in exactly one pp@ven though the picture looks nothing at all like
lines in the Euclidean plane. Modulo 5, two lines can stilémect in at most one point, and that is thanks
to the properties of addition, subtraction, multiplicati@and division modulo 5.

Counting

How many degree 2 polynomials are there modutb This is easy; there are 3 coefficients, each of which
can take omm distinct values for a total af®. Now suppose we are given three paitg y1), (X2,Y2), (X3,Y3),
then by property 2, there is a unique polynomial of degreech shatp(x;) =y; for 1 <i < 3. Suppose
we were only given two pairéxy,yi), (X2,¥2); how many distinct degree 2 polynomials are there that go
through these two points? Here is a slick way of working this d=ix anyxsz, and notice that there are
exactlym choices for fixingys. Now with three points specified, by property 2 there is a uaigolynomial

of degree 2 that goes through these three points. Sincesttrisei for each of thenways of choosings, it
follows that there aren polynomials of degree at most 2 that go through 2 points, assibelow:
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What if you were only given one point? Well, there anehoices for the second point, and for each of these
there are m choices for the third point, yieldimg polynomials of degree at most 2 that go through the point
given. A pattern begins to emerge, as is summarized in thenfivlg table:

Polynomials of degre& d overFy,
# of points # of polynomials
d+1 1
d m
d-1 m?
d—k miL

The reason that we can now count the number of polynomialedause we are working over a finite field.
If we were working over an infinite field such as the ration#tgre would be infinitely many polynomials
of degree d that can go through d points! Think of a line, wliiek degree one. If you were just given one
point, there would be infinitely many possibilities for thecend point, each of which uniquely defines a
line.

Finally, you might wonder why we chose to be a prime. Let us briefly consider what would go wrong
if we chosem not to be prime, for examplen = 6. Now we can no longer divide by 2 or 3. In the proof
of property 1, we asserted thpta) = c(a—a;)(a—ap)---(a—ag) # 0 if a# & for all i. But if we were
working modulo 6, and ib—a; = 2 anda— a; = 3, each non-zero, bya—a;)(a—az) =2-3 =0 mod 6.

Secret Sharing

In the late 1950’s and into the 1960’s, during the Cold Waesikient Dwight D. Eisenhower approved
instructions and authorized top commanding officers forube of nuclear weapons under very urgent
emergency conditions. Such measures were set up in ordefdndithe United States in case of an attack
in which there was not enough time to confer with the Presidad decide on an appropriate response. This
would allow for a rapid response in case of a Soviet attack @ Ebil. This is a perfect situation in which
a secret sharing scheme could be used to ensure that a gartaber of officials must come together in
order to successfully launch a nuclear strike, so that fangte no single person has the power and control
over such a devastating and destructive weapon. SuppoteShgovernment finally decides that a nuclear
strike can be initiated only if at leakt> 1 major officials agree to it. We want to devise a scheme suath th
(1) any group ok of these officials can pool their information to figure out thench code and initiate the
strike but (2) no group df— 1 or fewer have any information about the launch code, evéireif pool their
knowledge. For example, they should not learn whether tbeeses odd or even, a prime number, divisible
by some numbea, or the secret’s least significant bit. How can we accomphiss®?
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Suppose that there aneofficials indexed from 1 ta and the launch code is some natural nundret g
be a prime number larger tharands, where 0< s < q— 1 —we will work overGF(q) from now on.

Now pick a random polynomidP of degreek — 1 such that?(0) = s and give the sharB(1) to the first
official, P(2) to the second, .. R(n) to thenth. Then

» Any k officials, having the values of the polynomialkgboints, can use Lagrange interpolation to find
P, and once they know whétis, they can computB(0) = sto learn the secret.

» Any group ofk— 1 officials has no information abo&t All they know is that there is a polynomial of
degreek — 1 passing through thek— 1 points such tha®(0) = s. However, for each possible value
P(0) = b, there is a unique polynomial that is consistent with therimfation of thek — 1 officials,
and satisfies the constraint tH({0) = b.

Example. Suppose you are in charge of setting up a secret sharing scivere you want to distribute
n=5 shares to 5 people such that &y 3 or more people can figure out the secret, but 2 or fewer cannot
Let's say we are working ovesF(7) and you randomly choose the polynomial of dedreel =2 : P(x) =

3x? 4+ 5x+1 (here,P(0) = 1 = s, the secret). So you know everything there is to know abaut#tret and
the polynomial, but what about the people that receive theest? Well, the shares handed outR({E) = 2

to the first official,P(2) = 2 to the second?(3) = 1 to the third,P(4) = 6 to the fourth, andP(5) = 3 to the

fifth official. Let’s say that officials 3, 4, and 5 get togetliae expect them to be able to recover the secret).
Using Lagrange interpolation, they compute the followireifal functions:

(x—4)(x—=5) (x—4)(x—5)
80 =13=2)3=5) ~ 2

(x=3)(x—5) (x—3)(x—5)
MO=Ga3@"s - 1

(x=3)(x—4) (x—=3)(x—4)
850 =53y 5-a) — 2

They then compute the polynomial ov&iF(7): P(x) = (1)Az(X) + (6)A4(X) + (3)As(X) = 3x* +5x+ 1
(verify the computation!). Now they simply compu®€0) and discover that the secret is 1.

Let's see what happens if two officials try to get togethey, parsons 1 and 5. They both know that the
polynomial looks likeP(x) = apx? + a;x+ s. They also know the following equations:

P(l)=ax+a;+s=2
P(5) =4a,+5a;+s=3

But that is all they have, 2 equations with 3 unknowns, and they cannot find out the secret. This is
the case no matter which two officials get together. Notieg¢ $ince we are working ov&F(7), the two
people couldve guessed the secret(8 < 6) and constructed a unique degree 2 polynomial (by property
2). But the two people combined have the same chance of ggesbit the secret is as they do individually.
This is important, as it implies that two people have no mafermation about the secret than one person
does.

CS 70, Fall 2006, Lecture 11 6



