
Knowledge-Guided Linguistic Rewrites for Inference Rule Verification

Prachi Jain and Mausam
Indian Institute of Technology, Delhi

New Delhi, India
{csz148211,mausam}@cse.iitd.ac.in

Abstract

A corpus of inference rules between a pair
of relation phrases is typically generated us-
ing the statistical overlap of argument-pairs
associated with the relations (e.g., PATTY,
CLEAN). We investigate knowledge-guided
linguistic rewrites as a secondary source of ev-
idence and find that they can vastly improve
the quality of inference rule corpora, obtaining
27 to 33 point precision improvement while
retaining substantial recall. The facts inferred
using cleaned inference rules are 29-32 points
more accurate.

1 Introduction

The visions of machine reading (Etzioni, 2007) and
deep language understanding (Dorr, 2012) empha-
size the ability to draw inferences from text to dis-
cover implicit information that may not be explic-
itly stated (Schubert, 2002). This has natural appli-
cations to textual entailment (Dagan et al., 2013),
KB completion (Socher et al., 2013), and effective
querying over Knowledge Bases (KBs).

One popular approach for fact inference is to
use a set of inference rules along with proba-
bilistic models such as Markov Logic Networks
(Schoenmackers et al., 2008) or Bayesian Logic Pro-
grams (Raghavan et al., 2012) to produce human-
interpretable proof chains. While scalable (Niu
et al., 2011; Domingos and Webb, 2012), this is
bound by the coverage and quality of the back-
ground knowledge – the set of inference rules that
enable the inference (Clark et al., 2014).

Antecedent Consequent Y/N?
(X, make a note of, Y) (X, write down, Y) Y
(X, offer wide range of, Y) (X, offer variety of, Y) Y
(X, make full use of, Y) (Y, be used by, X) Y
(X, be wounded in, Y) (X, be killed in, Y) N
(X, be director of, Y) (X, be vice president of, Y) N
(X, be a student at, Y) (X, be enrolled at, Y) N

Figure 1: Sample rules verified (Y) and filtered (N) by our

method. Rules #4, #5 were correctly and #6 wrongly filtered.

The paper focuses on generating a high preci-
sion subset of inference rules over Open Informa-
tion Extraction (OpenIE) (Etzioni et al., 2011) rela-
tion phrases (see Fig 1). OpenIE systems generate a
schema-free KB where entities and relations are rep-
resented via normalized but not disambiguated tex-
tual strings. Such OpenIE KBs scale to the Web.

Most existing large-scale corpora of inference
rules are generated using distributional similarity,
like argument-pair overlap (Schoenmackers et al.,
2010; Berant et al., 2012), but often eschew any lin-
guistic or compositional insights. Our early analysis
revealed that such inference rules have very low pre-
cision, not enough to be useful for many real tasks.
For human-facing applications (such as IE-based de-
mos), high precision is critical. Inference rules have
a multiplicative impact, since one poor rule could
potentially generate many bad KB facts.
Contributions: We investigate the hypothesis that
“knowledge-guided linguistic rewrites can provide
independent verification for statistically-generated
Open IE inference rules.” Our system KGLR’s
rewrites exploit the compositional structure of Open
IE relation phrases alongside knowledge in re-
sources like Wordnet and thesaurus. KGLR inde-
pendently verifies rules from existing inference rule



corpora (Berant et al., 2012; Pavlick et al., 2015)
and can be seen as additional annotation on exis-
ting inference rules. The verified rules are 27 to
33 points more accurate than the original corpora
and still retain a substantial recall. The precision
of inferred knowledge also has a precision boost
of over 29 points. We release our KGLR imple-
mentation, its annotations on two popular rule cor-
pora along with gold set used for evaluation and the
annotation guidelines for further use (available at
https://github.com/dair-iitd/kglr.git).

2 Related work

Methods for inference over text include random
walks over knowledge graphs (Lao et al., 2011),
matrix completion (Riedel et al., 2013), deep neu-
ral networks (Socher et al., 2013; Rocktäschel et
al., 2015a), natural logic inference (MacCartney
and Manning, 2007) and graphical models (Schoen-
mackers et al., 2008; Raghavan et al., 2012). Most
of these need (or benefit from) a background knowl-
edge of inference rules, including matrix completion
(Rocktäschel et al., 2015b).

Inference rules are predominantly generated via
extended distributional similarity – two phrases hav-
ing a high degree of argument overlap are simi-
lar, and thus candidates for a unidirectional or a
bidirectional inference rule. Methods vary on the
base representation, e.g., KB relations (Galárraga
et al., 2013; Grycner et al., 2015), Open IE rela-
tion phrases (Schoenmackers et al., 2010), syntactic-
ontological-lexical (SOL) patterns (Nakashole et al.,
2012), and dependency paths (Lin and Pantel, 2001).
An enhancement is global transitivity (TNCF algo-
rithm) for improving recall (Berant et al., 2012). The
highest precision setting of TNCF (λ = 0.1) was
released as a corpus (informally called CLEAN) of
Open IE inference rules.1

Distributional similarity approaches have two
fundamental limitations. First, they miss obvious
commonsense facts, e.g., 〈(X, married, Y) → (X,
knows, Y)〉 – text will rarely say that a couple know
each other. Second, they are consistently affected by
statistical noise and end up generating a wide variety
of inaccurate rules (see rules #4, and #5 in Figure 1).

1http://u.cs.biu.ac.il/˜nlp/resources/downloads/predicative-
entailment-rules-learned-using-local-and-global-algorithms

Our early experiments with CLEAN revealed its pre-
cision to be about 0.49, not enough to be useful in
practice, especially for human-facing applications.

Similar to our paper, some past works have used
alternative sources of knowledge. Weisman et al.
(2012) study inference between verbs (e.g., 〈startle
→ surprise〉), but they get low (0.4) precision.
Wordnet corpus to generate inference rules for nat-
ural logic (Angeli and Manning, 2014) improved
noun-based inference. But, they recognize relation
entailments as a key missing piece. Recently, nat-
ural logic semantics is added to a paraphrase cor-
pus (PPDB2.0). Many of their features, e.g., lexi-
cal/orthographic, multilingual translation based, are
complimentary to our method.

We test our KGLR algorithm on CLEAN and en-
tailment/paraphrase subset of PPDB2.0 (which we
call PPDBe).

3 Knowledge-Guided Linguistic Rewrites
(KGLR)

Given a rule 〈(X, r1, Y)→ (X, r2, Y)〉 or 〈(X, r1, Y)
→ (Y, r2, X)〉 we present KGLR, a series of rewrites
of relation phrase r1 to prove r2 (egs in Fig 1). The
last two rewrites deal with reversal of argument or-
der in r2; others are for the first case.

Thesaurus Synonyms: Thesauri typically provide an
expansive set of potential synonyms, encompass-
ing near-synonyms and contextually synonymous
words. Thesaurus synonyms are not that helpful for
generating inference rules (or else we will generate
rules like 〈produce → percolate〉). However, they
are excellent in rule verification as they provide evi-
dence independent from statistical overlap metrics.

We allow any word/phrase w1 in r1 to be replaced
by any word/phrase w2 from its thesaurus synsets
as long as (1) w2 has same part-of-speech as w1 and
(2) w2 is seen in r2 at the same distance from left
of the phrase as w1 in phrase r1, but ignoring words
dropped due to other rules whose details follows
next. To define a thesaurus synset, we tagw1 with its
POS and look for all thesaurus synsets of that POS
containing w1. We allow this rewrite if PMI(w1, w2)
> λ (=-2.5 based on a devset). We calculate PMI as
log (#w1 occurs in synsets of w2+#w2 occurs in synsets of w1)

(# of synsets of w1×# of synsets of w2)
.

Some words can be both synonyms and antonyms
in different situations. For example, thesaurus lists



‘bad’ as both a synonym and antonym of ‘good’.
We don’t allow such antonyms in these rewrites.

Thesarus synonyms can verify 〈offer a vast range
of→ provide a wide range of〉, since offer-provide,
and vast-wide are thesaurus synonyms. We use Ro-
get’s 21st Century Thesaurus in KGLR implementa-
tion.
Negating rules: We reject rules where r2 explicitly
negates r1 or vice versa. We reject a rule if r2 is
same as r1 if we drop ‘not’ from one of them. For
example, the rule 〈be the president of→ be not the
president of〉, will be rejected.
Wordnet Hypernyms: We replace word/phrase w in
r1 by its Wordnet hypernym if it is in r2. We prove
〈be highlight of → be component of〉, as Wordnet
lists ‘component’ as a hypernym of ‘highlight’.
Dropping Modifiers: We drop any adjective, ad-
verb, superlatives or comparatives (e.g., ‘more’,
‘most’) from r1. This lets us verify 〈be most im-
portant part of→ be part of〉.
Gerund-Infinitive Equivalence: We convert infini-
tive constructions into gerunds and vice versa. For
example, 〈starts to drink↔ starts drinking〉.
Deverbal Nouns: We use Wordnet’s derivationally
related forms to compute a verb-noun pair list. We
allow back and forth conversions from “be noun of”
to related verb. So, we verify 〈be cause of→ cause〉.
Light Verbs and Serial Verbs: If a light verb precede
a word with derivationally related noun sense, we
delete it. Similarly, if a serial verb precede a word
with derivationally related verb sense, we delete
it. We identify light verbs via the verbs that fre-
quently precede a 〈(a|an) (verb|deverbal noun)〉 pair
in Wikipedia. Serial verbs are identified as the verbs
that frequently precede another verb in Wikipedia.
Thus we can convert 〈take a look at→ look at〉.
Preposition Synonyms: We manually create a list of
preposition near-synonyms such as into-to, in-at, at-
near. We replace a preposition by its near-synonym.
This proves 〈translated into→ translated to〉.
Be-Words & Determiners: We drop be-words (‘is’,
‘was’, ‘be’, etc.) and determiners from r1 and r2.
Active-Passive: We allow (X, verb, Y) to be rewrit-
ten as (Y, be verb by, X).
Redundant Prepositions: We find that often prepo-
sitions other than ‘by’ can be alternatively used

with passive forms of some verbs. Moreover, some
prepositions can be redundantly used in active forms
too. For example, 〈(X, absorb, Y)↔ (Y, be absorbed
in, X)〉, or similarly, 〈(X, attack, Y) ↔ (X, attack
on, Y)〉. To create such a list of verb-preposition
pairs, we simply trust the argument-overlap statis-
tics. Statistics here does not make that many errors
since the base verb in both relations is the same.

3.1 Implementation

KGLR allows repeated application of these rewrites
to modify r1 and r2. If it achieves r1 = r2 it ver-
ifies the inference rule. For tractable implementa-
tion KGLR uses a depth first search approach where
a search node maintains both r1 and r2. Search
does not allow rewrites that introduce any new lexi-
cal (lemmatized) entries not in original words(r1) ∪
words(r2). If it can’t apply any rewrite to get a new
node, it returns failure.

Many rules are proved by a sequence of rewrites.
E.g., to prove 〈(X, be a major cause of, Y)→ (Y, be
caused by, X)〉, the proof proceeds as: (X, be a ma-
jor cause of, Y)→ (X, be major cause of, Y)→ (X,
be cause of, Y) → (X, cause, Y) → (Y, be caused
by, X) by dropping determiner, dropping adjective,
deverbal noun, and active-passive transformation re-
spectively. Similarly, 〈(X, helps to protect, Y)→ (X,
look after, Y)〉 follows from gerund-infinitive con-
version (helps protect), dropping support from serial
verbs (protect), and thesaurus synonym (look after).

4 Experiments

KGLR verifies a subset of rules from CLEAN and
PPDBe to produce, VCLEAN and VPPDBe. Our ex-
periments answer these research questions: (1) What
is the precision and size of the verified subsets com-
pared to original corpora?, (2) How does additional
knowledge generated after performing inference us-
ing these rules compare with each other? and (3)
Which rewrites are critical to KGLR performance?

Comparison of CLEAN and VCLEAN: The orig-
inal CLEAN corpus has about 102K rules. KGLR

verifies about 36K rules and filter 66K rules out. To
estimate the precisions of CLEAN and VCLEAN we
independently sampled a random subset of 200 in-
ference rules from each and asked two annotators
(graduate level NLP students) to label the rules as



correct or incorrect. Rules were mixed together and
the annotators were blind to the system that gen-
erated a rule. Our initial annotation guideline was
similar to that of textual entailment – label a rule
as correct if the consequent can usually be inferred
given the antecedent, for most naturally occurring
argument-pairs for the antecedent.

Our annotators faced one issue with the guide-
line – some inference rules were valid if (X,Y) were
bound to specific types, but not for others. For exam-
ple, 〈(X, be born in, Y)→ (X, be birthplace of, Y)〉 is
valid if Y is a location, not if Y is a year. Even seem-
ingly correct inference rules, e.g., 〈(X, is the father
of, Y)→ (Y, is the child of, X)〉, can make unusual
incorrect inferences: (Gandhi, is the father of, India)
does not imply (India, is the child of, Gandhi). Un-
fortunately, these corpora don’t associate argument-
type information with their inference rules.

To mitigate this we refined the annotation guide-
lines to accept inference rules as correct as long
as they are valid for some type-pair. The inter-
annotator agreement with this modification was 94%
(κ = 0.88). On the subset of the tags where the two
annotators agreed we find the precision of CLEAN

to be 48.9%, whereas VCLEAN was evaluated to be
82.5% precise – much more useful for real-world
applications. Multiplying the precision with their
sizes, we find the effective yield2 of CLEAN to be
50K compared to 30K for VCLEAN. Overall, we
find that VCLEAN obtains a 33 point precision im-
provement with an effective yield of about 60%.

Error Analysis: Most of VCLEAN errors are due
to erroneous (or unusual) thesaurus synonyms. For
missed recall, we analyzed CLEAN’s sample missed
by VCLEAN. We find that only about 13% of those
are world knowledge rules (e.g., rule #6 in Figure
1). Other missed recall is because of some missing
rewrites, missing thesaurus synonyms, spelling mis-
takes. These can potentially be captured by using
other resources and adding rewrite rules.

Comparison of PPDBe and VPPDBe: Unlike
CLEAN, PPDB2.0 associates a confidence value for
each rule, which can be varied to obtain different
levels of precision and yield. We control for yield so
that we can compare precisions directly.

We operate on PPDBe subset that has an Open IE-

2Yield is proportional to recall

like relation phrase on both sides; this was identified
by matching to ReVerb syntactic patterns (Etzioni et
al., 2011). This subset is of size 402K. KGLR on
this produces 85K verified rules (VPPDBe). We find
the threshold for confidence values in PPDBe that
achieves the same yield (confidence > 0.342).

We perform annotation on PPDBe(0.342) and
VPPDBe using same annotation guidelines as before.
The inter-annotator agreement was 91% (κ = 0.82).
On the subset of the tags where the two annotators
agreed we find the precision of PPDBe to be low –
44.2%, whereas VPPDBe was evaluated to be 71.4%
precise. We notice that about 4 in 5 PPDB rela-
tion phrases are of length 1 or 2 (whereas 50% of
CLEAN relation phrases are of length ≥ 3). This
contributes to a slightly lower precision of VPPDBe,
as most rules are proved by thesaurus synonymy and
the power of KGLR to handle compositionality of
longer relation phrases does not get exploited.

Comparison of Inferred Facts: A typical use
case of inference rules is in generating new facts
by applying inference rules to a KB. We indepen-
dently apply VCLEAN’s, CLEAN’s, PPDBe’s and
VPPDBe’s inference rules on a public corpus of 4.2
million ReVerb triples.3 Since ReVerb itself has sig-
nificant extraction errors (our estimate is 20% er-
rors) and our goal is to evaluate the quality of in-
ference, we restrict this evaluation to only the subset
of accurate ReVerb extractions.

VCLEAN and CLEAN facts: We sampled about
200 facts inferred by VCLEAN rules and CLEAN

rules each (applied over accurate ReVerb extrac-
tions) and gave the original sentence as well as
inferred facts to two annotators. We obtained a
high inter-annotator agreement of 96.3%(κ = 0.92)
and we discarded disagreements from final analysis.
Overall, facts inferred by CLEAN achieved a preci-
sion of about 49.1% and those inferred by VCLEAN

obtained a 81.6% precision. The estimated yields of
fact corpora (precision×size) are 7 and 4.5 million
for CLEAN and VCLEAN respectively. This yield
estimate does not include the initial 4.2 million facts.

PPDBe and VPPDBe facts: As done previously,
we sampled 200 facts inferred by PPDBe and
VPPDBe rules, which were annotated by two anno-
tators. We obtained a good inter annotator agree-

3Available at http://reverb.cs.washington.edu



System CLEAN VCLEAN
Size 102,565 36,229
Rule Precision 48.9% 82.5%
Rule Yield 50,154 29,889
Fact Precision 49.1% 81.6%
Fact Yield 7 million 4.5 million
System PPDBe(0.342) VPPDBe

Size 85,272 85,261
Rule Precision 44.2% 71.4%
Fact Precision 22.16% 51.30%
Fact Yield 41 million 35 million

Figure 2: The precision and yield of inference rules after KGLR

validation, and that of KB generated by inference using these

rule-sets. Comparison with PPDBe is yield-controlled.

ment of 90.0%(κ = 0.8) and we discarded disagree-
ments from final analysis. Overall, facts inferred by
PPDBe achieved a really poor precision - 22.2% and
those inferred by VPPDBe obtained an improvement
of about 29 points (51.3% precision). Short relation
phrases (mostly of length 1 or 2, which forms 80%
of PPDBe) contribute to low precision of VPPDBe.
Example low precision VPPDBe rules include 〈 (X,
be, Y) → (X, obtain, Y)〉, 〈 (X, include, Y) → (X,
come, Y)〉, which were inaccurately verified due to
thesaurus errors. The estimated yields of fact cor-
pora are 41 million and 35 million for PPDBe and
VPPDBe respectively.
Ablation Study of KGLR rewrites: We evaluate
the efficacy of different rewrites in KGLR by per-
forming an ablation study (see Table 3). We ran
KGLR by turning of one rewrite on a sample of 600
CLEAN rules (our development set) and calculate
its precision and recall. The ablation study high-
lights that most rewrites add some value to the per-
formance of KGLR, however Antonyms and Drop-
ping modifiers are particularly important for preci-
sion and Active-Passive and Redundant Preposition
add substantial recall.

5 Discussion

KGLR’s value is in precision-sensitive tasks such as
a human-facing demo, or downstream NLP applica-
tion (like question answering) where error multipli-
cation is highly undesirable. Along with high preci-
sion, it still obtains acceptably good yield.

Our annotators observe the importance of type-
restriction of arguments for inference rules (similar
to rules in (Schoenmackers et al., 2010)). Type an-

System Precision Recall
KGLR (all rules) 85.4% 62.0%
w/o Negating Rules 85.4% 62.0%
w/o Antonyms 84.2% 62.0%
w/o Wordnet Hypernyms 86.1% 59.3%
w/o Dropping Modifiers 84.9% 59.6%
w/o Gerund-Infinitive Equivalence 85.2% 61.0%
w/o Light and Serial Verbs 85.0% 59.9%
w/o Deverbal Nouns 85.4% 62.0%
w/o Preposition Synonyms 86.9% 56.9%
w/o Active-Passive 85.0% 54.5%
w/o Redundant Prepositions 86.1% 61.6%

Figure 3: Ablation study of rule verification using KGLR

rewrites on our devset of 600 CLEAN rules

notation of existing inference rule corpora is an im-
portant step for obtaining high precision and clarity.

Inference rules are typically of two types – lin-
guistic/synonym rewrites, which are captured by our
work, and world knowledge rules (see rule #6 in Fig
1), which are not. We were surprised to estimate
that about 87% of CLEAN, which is a statistically-
generated corpus, is just linguistic rewrites! Ob-
taining world knowledge or common-sense rules at
high precision and scale continues to be the key NLP
challenge in this area.

6 Conclusions

We present Knowledge-guided Linguistic Rewrites
(KGLR) which exploits the compositionality of rela-
tion phrases, guided by existing knowledge sources,
such as Wordnet and thesaurus to identify a high pre-
cision subset of an inference rule corpus. Validated
CLEAN has a high precision of 83% (vs 49%) at a
yield of 60%. Validated PPDBe has a precision of
71% (vs 44%) at same yield. The precision of in-
ferred facts has about 29-32 pt precision gain. We
expect KGLR to be effective for precision-sensitive
applications of inference. The complete code and
data has been released for the research community.

Acknowledgments: We thank Ashwini Vaidya and
the anonymous reviewers for their helpful sugges-
tions and feedback. We thank Abhishek, Aditya,
Ankit, Jatin, Kabir, and Shikhar for helping with
the data annotation. This work was supported by
Google language understanding and knowledge dis-
covery focused research grants to Mausam, a KISTI
grant and a Bloomberg grant also to Mausam. Prachi
was supported by a TCS fellowship.



References
Gabor Angeli and Christopher D Manning. 2014. Nat-

uralli: Natural logic inference for common sense rea-
soning. In Empirical Methods in Natural Language
Processing (EMNLP).

Jonathan Berant, Ido Dagan, Meni Adler, and Jacob
Goldberger. 2012. Efficient tree-based approxima-
tion for entailment graph learning. In The 50th Annual
Meeting of the Association for Computational Linguis-
tics, Proceedings of the System Demonstrations, July
10, 2012, Jeju Island, Korea.

Peter Clark, Niranjan Balasubramanian, Sumithra Bhak-
thavatsalam, Kevin Humphreys, Jesse Kinkead,
Ashish Sabharwal, and Oyvind Tafjord. 2014. Auto-
matic construction of inference-supporting knowledge
bases.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Pedro M. Domingos and William Austin Webb. 2012.
A tractable first-order probabilistic logic. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada.

Bonnie Dorr. 2012. Language programs at Darpa.
AKBC-WEKEX 2012 Invited Talk.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam. 2011. Open infor-
mation extraction: The second generation. In IJCAI,
volume 11, pages 3–10.

Oren Etzioni. 2007. Machine reading of web text. In
Proceedings of the 4th International Conference on
Knowledge Capture (K-CAP 2007), October 28-31,
2007, Whistler, BC, Canada, pages 1–4.
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