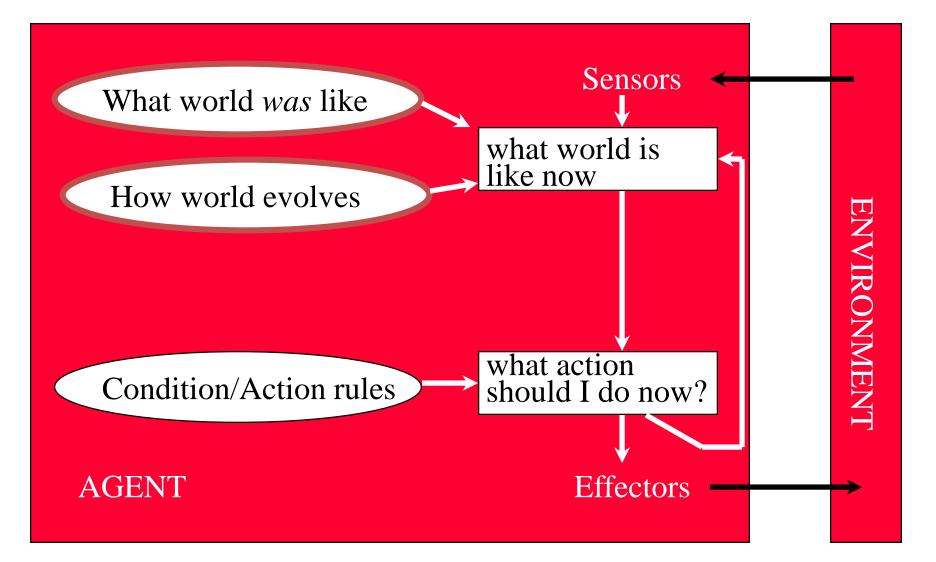
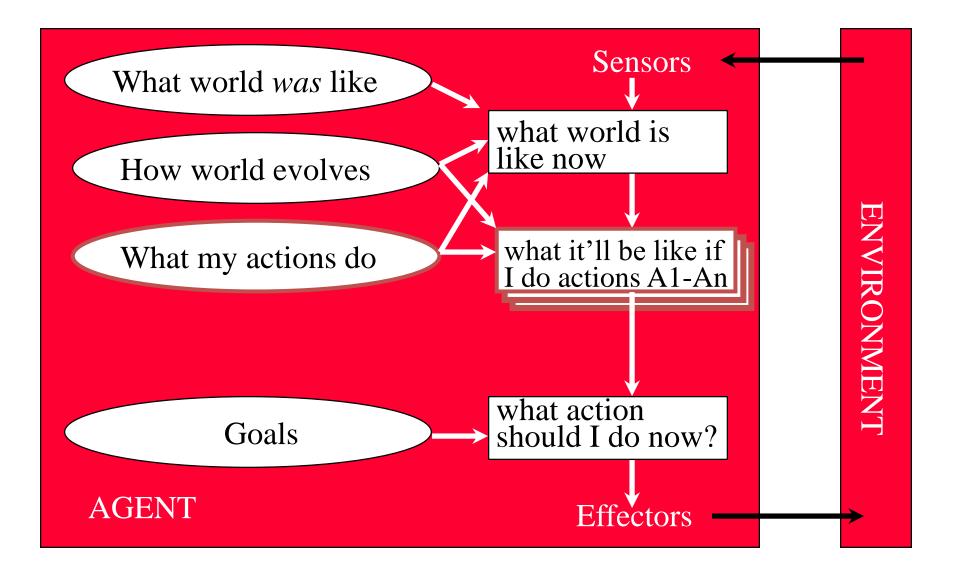
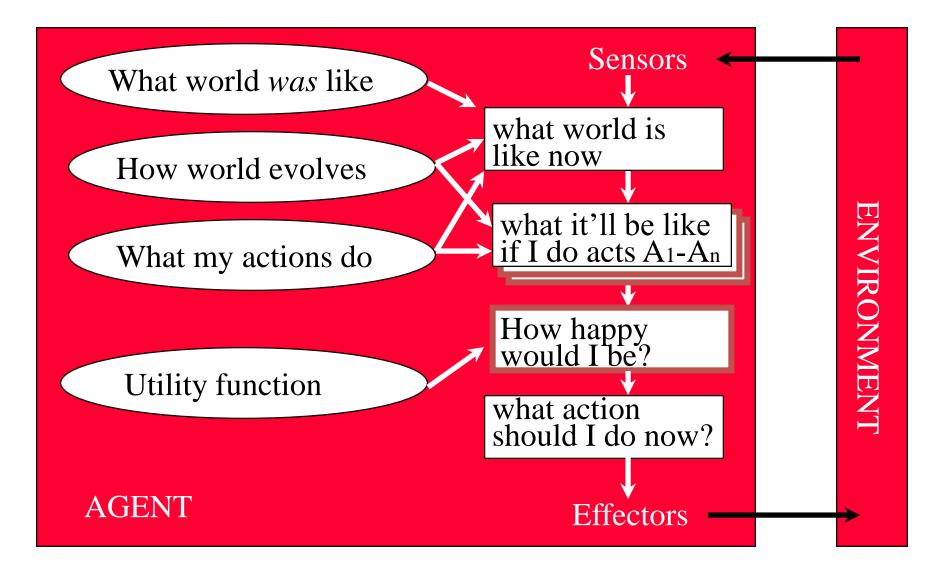

Artificial Intelligence Recap

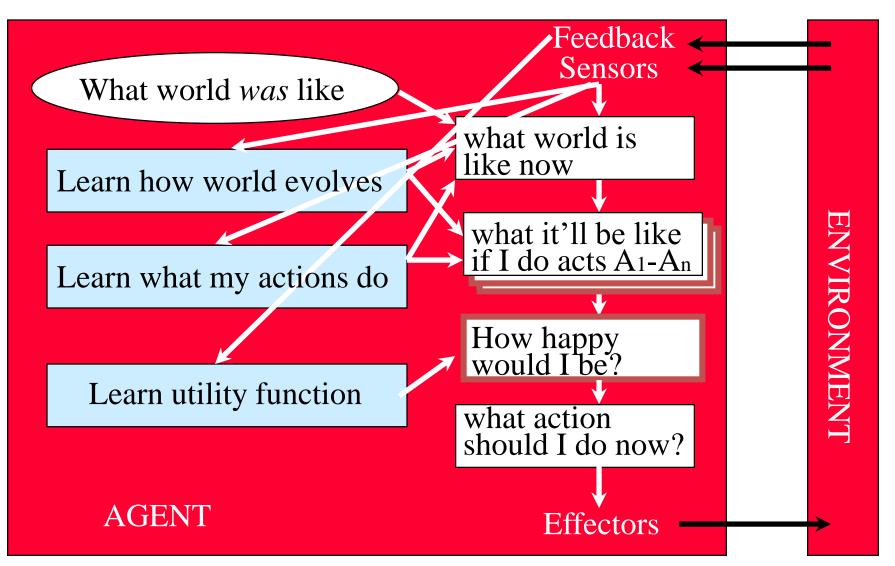
Mausam


What is intelligence?

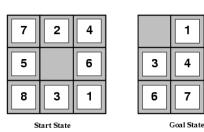
- (bounded) Rationality
 - We have a performance measure to optimize
 - Given our state of knowledge
 - Choose optimal action
 - Given limited computational resources
- Human-like intelligence/behavior


Simple reflex agents


Reflex agent with internal state


Goal-based agents

Utility-based agents




Learning agents

Search in Discrete State Spaces

- This is different from Web Search 😳
- Every discrete problem can be cast as a search problem.
- (states, actions, transitions, cost, goal-test)
- Types
 - uninformed systematic: often slow
 - DFS, BFS, uniform-cost, iterative deepening
 - Heuristic-guided: better
 - Greedy best first, A*
 - relaxation leads to heuristics
 - Local: fast, fewer guarantees; often local optimal
 - Hill climbing and variations
 - Simulated Annealing: global optimal
 - Genetic algorithms: somewhat non-local due to crossing over
 - (Local) Beam Search

Search Example: Game Playing

- Game Playing
 - AND/OR search space (max, min)
 - minimax objective function
 - minimax algorithm (~dfs)
 - alpha-beta pruning
 - Utility function for partial search
 - Learning utility functions by playing with itself
 - Openings/Endgame databases
 - Secondary search/Quiescence search

Knowledge Representation and Reasoning

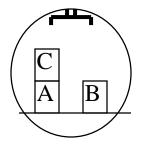
- Representing: what I know
- Reasoning: what I can infer

• Logic

• PDDL

Bayes Nets

KR&R Example: Propositional Logic

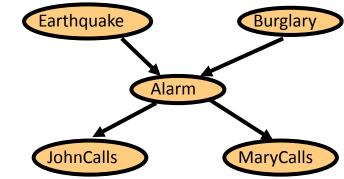

- Representation: Propositional Logic Formula — CNF, Horn Clause,...
- Reasoning: Deduction
 - Forward Chaining
 - Resolution
- Model Finding
 - Enumeration
 - SAT Solving

Search+KR&R Example: SAT Solving

- Representation: CNF Formula
- Reasoning
 - pure literals; unit clauses; unit propagation
- Search
 - DPLL (~ backtracking search)
 - MOM's heuristic
 - Local: GSAT, WalkSAT
- Advances
 - Clause Learning: learning from mistakes
 - Restarts in systematic search
 - Portfolio of SAT solvers; Parameter tuning
- Phase Transitions in SAT problems

Search+KR&R Example: Planning

- Representation: STRIPS
- Reasoning: Planning Graph
 - Polynomial data structure



- reasons about constraints on plans (mutual exclusion)
- Search
 - Forward: state space search
 - planning graph based heuristic
 - Backward: subgoal space search
 - Local: FF (enforced hill climbing)
- Planning as SAT: SATPlan

KR&R: Probability

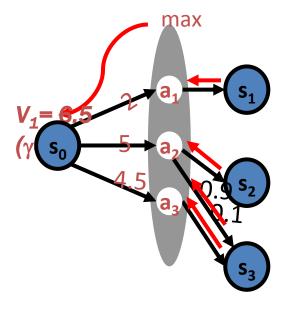
- **Representation:** Bayesian Networks
 - encode probability distributions compactly
 - by exploiting conditional independences

- Reasoning
 - Exact inference: var elimination
 - Approx inference: sampling based methods
 - rejection sampling, likelihood weighting, Gibbs sampling

KR&R: One-step Decision Theory

Representation

- actions, probabilistic outcomes, rewards
- Reasoning
 - expected value/regret of action
 - Expected value of perfect information
- Non-deterministic uncertainty
 - Maximax, maximin, eq likelihood, minimax regret..
- Utility theory: value of money...


Actions	States of Nature	
	Favorable Market	Unfavorable Market
Large plant	\$200,000	-\$180,000
Small plant	\$100,000	-\$20,000
No plant	\$0	\$ 0

KR&R: Markov Decision Process

Representation

- states, actions, probabilistic outcomes, rewards
- ~AND/OR Graph (sum, max)
- Reasoning: V*(s)
 - Value Iteration: search thru value space
 - Policy Iteration: search thru policy space
- State space search

– LAO* (AND/OR version of A*)

Learning: BNs/NB

- ML estimation. max $P(D|\theta)$
 - counting; smoothing
- MAP estimation max $P(\theta|D)$..
- Hidden data
 - Expectation Maximization (EM) {local search}

- Structure learning (BN)
 - Local search thru structure space
 - Trade off structure complexity and data likelihood

Learning: Reinforcement Learning

• Learn model while taking actions

- What to learn
 - T and R: model based
 - Policy: Model free
- Which actions to take
 - Exploration Exploitation

Popular Themes

• Weak AI vs. Strong AI

• Syntax vs. Semantics

• Logic vs. Probability

Weak AI vs. Strong AI

- Weak general methods
 - primarily for problem solving
 - A*, CSP, Bayes Nets, MDPs...
- Strong -- knowledge intensive
 - more knowledge \Rightarrow less computation
 - achieve better performance in specific tasks
 - POS tagging, Chess, Jeopardy

Syntax vs. Semantics

- Syntax: what can I say
 - Sentence in English
 - Logic formula in Prop logic
 - CPT in BN
- Semantics: what does it mean
 - meaning that we understand
 - A ^ B: both A and B are true
 - Conditional independence ...

Logic vs. Probability

- Discrete || Continuous
- Hill climbing || Gradient ascent
- SAT solving || BN inference
- Tree structured CSP || Polytree Bayes nets
- Cutset || Cutset
- Classical Planning || Factored MDP
- Bellman Ford || Value Iteration
- A* || LAO*

Advanced Ideas in Al

- Factoring state/actions...
- Hierarchical decomposition
 - Hierarchy of actions
- Sampling based approaches
 - Sampling in systematic search
 - Markov Chain Monte Carlo
 - UCT algorithm: game playing
 - Particle filters: belief tracking in robotics
- Context sensitive independence
 - Cutsets
 - Backbones in logic
- Combining probability and logic
 - Markov Logic Networks, Probabilistic Relational Models

Al we didn't cover

- Temporal models: HMMs, Kalman filters...
- Ontologies
- Robotics
- Vision
- Mechanism design
- Multi-agent systems
- Sensor Networks
- Computational Neuroscience

Al is about problems.

- It is an application-driven field
- Happy to beg, borrow, steal ideas from anywhere
- Traditionally discrete ... more and more cont.
- Traditionally logic... almost all probability
 - Recent close connections with EE/Stat due to ML
- HUGE field

Applications of AI

- Mars rover: planning
- Jeopardy: NLP, info retrieval, machine learning
- Puzzles: search, CSP, logic
- Chess: search
- Web search: IR
- Text categorization: machine learning
- Self-driving cars: robotics, prob. reasoning, ML...

Ethics of Artificial Intelligence

- Robots
 - Robot Rights
 - Three Laws of Robotics
- Al replacing people jobs
 - Any different from industrial revolution?
- Ethical use of technology
 - Dynamite vs. Speech understanding
- Privacy concerns
 - Humans/Machines reading freely available data on Web
 - Gmail reading our news
- Al for developing countries/improving humanity

Al-Centric World 🙂 Algorithms Theory Graphics Databases Operations AI **Statistics** Research Psychology Linguistics Neurosc. Robot Design