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Parameter Estimation

• Learn all the CPTs in a Bayesian Net

• Data Model  Queries

• Key idea: counting!
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Optimization of Continuous Functions

• Discretization

– use hill-climbing

• Gradient descent

– make a move in the direction of the gradient

• gradients: closed form or empirical
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Gradient Descent
Assume we have a continuous function: f(x1,x2,…,xN) 

and we want minimize over continuous variables X1,X2,..,Xn

1. Compute the gradients  for all i: f(x1,x2,…,xN) /xi

2. Take a small step downhill in the direction of the gradient:

xi  xi - λf(x1,x2,…,xN) /xi

3. Repeat.

• How to select λ

– Line search: successively double

– until f starts to increase again
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Burglars and Earthquakes
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b

P(a|e, b) = ?
=  10/1010
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b ~0.01

P(a|e, b) = ?
=  100/120
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b 0.83

e,b ~0.01

P(a|e, b) = ?
=  50/250
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b 0.2

e,b 0.83

e,b ~0.01

P(a|e, b) = ?
=  5/5
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b 1

e,b 0.2

e,b 0.83

e,b ~0.01

Bad idea to have prob as 0 or 1
• stumps Gibbs sampling
• low prob states become impossible
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Solution: Smoothing
• Why?

– To deal with events observed zero times.
– “event”: a particular ngram

• How?
– To shave a little bit of probability mass from the higher 

counts, and pile it instead on the zero counts

• Laplace Smoothing/Add-one smoothing
– assume each event was observed at least once.
– add 1 to all frequency counts

• Add m instead of 1 (m could be > or < 1)
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Counting w/ Smoothing
Earthquake Burglary

Alarm

E B A #

0 0 0 1000+1

0 0 1 10+1

0 1 0 20+1

0 1 1 100+1

1 0 0 200+1

1 0 1 50+1

1 1 0 0+1

1 1 1 5+1

Pr(A|E,B)

e,b 0.86

e,b ~0.2

e,b ~0.83

e,b ~0.01
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ML vs. MAP Learning 
• ML: maximum likelihood (what we just did)

– find parameters that maximize the prob of seeing the data D

– argmaxθ P(D| θ)

– easy to compute (for example, just counting)

– assumes uniform prior

• Prior: your belief before seeing any data

– Uniform prior: all parameters equally likely

• MAP: maximum a posteriori estimate

– maximize prob of parameters after seeing data D

– argmaxθ P(θ|D) = argmaxθ P(D|θ)P(θ)

– allows user to input additional domain knowledge

– better parameters when data is sparse… 

– reduces to ML when infinite data
© Mausam
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Learning Inference



H

P(H)

P(D|H)

i.i.d

D1 D2 DN



True hypothesis eventually dominates…
probability of indefinitely producing uncharacteristic data 0



Bayesian prediction is optimal
(Given the hypothesis prior,

all other predictions are less likely)



ML vs. MAP Learning 
• ML: maximum likelihood (what we just did)

– find parameters that maximize the prob of seeing the data D

– argmaxθ P(D| θ)

– easy to compute (for example, just counting)

– assumes uniform prior

• Prior: your belief before seeing any data

– Uniform prior: all parameters equally likely

• MAP: maximum a posteriori estimate

– maximize prob of parameters after seeing data D

– argmaxθ P(θ|D) = argmaxθ P(D|θ)P(θ)

– allows user to input additional domain knowledge

– better parameters when data is sparse… 

– reduces to ML when infinite data
© Mausam
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Learning the Structure

• Problem: learn the structure of Bayes nets

• Search thru the space… 
– of possible network structures!

– Heuristic search/local search

• For each structure, learn parameters

• Pick the one that fits observed data best
– Caveat – won’t we end up fully connected????

When scoring, add a penalty

model complexity

© Mausam
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Local Search
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How to learn when some data missing?

• Expectation Maximization (EM)

© Mausam
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Chicken & Egg Problem
• If we knew the missing value

– It would be easy to learn CPT

• If we knew the CPT

– Then it’d be easy to infer the (probability of) missing value

• But we do not know either!

Slide by Daniel S. Weld
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Expectation Maximization

• Guess probabilities for nodes with missing values
(e.g., based on other observations)

• Compute the probability distribution over the 
missing values, given our guess

• Update the probabilities based on the guessed 
values

• Repeat until convergence

• Guaranteed to converge to local optimum

© Mausam
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Learning Summary

• Known structure, fully observable: only need to do 
parameter estimation

• Unknown structure, fully observable: do heuristic/local 
search through structure space, then parameter estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to solve!
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Other Graphical Models

• Directed
– Bayesian Networks

• Undirected
– Markov Network (Markov Random Field)

– BN MN (moralization: marry all co-parents)

• Mixed
– Chain Graph

A

X

B

C

A

X

B

C

A

X

B

C
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Other Graphical Models

Naïve Bayes

Logistic 
Regression

Linear-chain CRFs

HMMs
Generative 

directed models

General CRFs

Sequence

Sequence

Conditional Conditional Conditional

General
Graphs

General
Graphs
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