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Burglars and Earthquakes

You are at a “Done with the Al class” party.

Neighbor John calls to say your home alarm has gone off (but
neighbor Mary doesn't).

Sometimes your alarm is set off by minor earthquakes.
Question: Is your home being burglarized?
Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal” knowledge:
— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call



Example

* Pearl lives in Los Angeles. Itis a Burglary => Alarm
high-crime area. Pearl installed a Earth-Quake => Alarm
burglar alarm. He asked his B
neighbors John & Mary to call Alarm => John-calls
him if they hear the alarm. This Alarm => Mary-calls
way he can come home if there is
a burglary. Los Angeles is also
earth-quake prone. Alarm goes

: _ R
off when there is an earth-quake. If there is a burglary, will Mary call:

Check KB&E |=M

If Mary didn’t call, is it possible that
Burglary occurred?

Check KB & ~“M doesn’t entail ~B



Example (Real)

Pearl lives in Los Angeles. It is a high-
crime area. Pearl installed a burglar
alarm. He asked his neighbors John &
Mary to call him if they hear the alarm.
This way he can come home if there is a
burglary. Los Angeles is also earth-
guake prone. Alarm goes off when
there is an earth-quake.

Burglary => Alarm
Earth-Quake => Alarm
Alarm => John-calls
Alarm => Mary-calls

If there is a burglary, will Mary call?
Check KB & E [=M

If Mary didn’t call, is it possible that Burglary
occurred?

Check KB & “M doesn’t entail ~B



*Potato in the tail-pipe

~ 1iscient & Eager way: .
— Model everything!

— E.g. Model exactly the
conditions under which John
will call

* He shouldn’t be listening to
loud music, he hasn’t gone
on an errand, he didn’t
recently have a tiff with
Pearl etc etc.

A&cl&c2&c3&..cn=>J

(also the exceptions may have
interactions

c1&c5 =>"~c9)

Qualification and Ramification problems

How do we handle Real Pearl?

lgnorant (non-omniscient)
and Lazy (non-omnipotent)
way:

— Model the likelihood

— In 85% of the worlds where
there was an alarm, John will
actually call

— How do we do this?
* Non-monotonic logics
e “certainty factors”

. ”fuzzy IOgiC”
* “probability” theory?-

make this an infeasible enterprise



Bayes Nets

*|In general, joint distribution P over set of
variables (X; x ... x X,,) requires exponential
space for representation & inference

*BNs provide a graphical representation of
conditional independence relations in P

—usually quite compact

—requires assessment of fewer parameters, those
being quite natural (e.g., causal)

—efficient (usually) inference: query answering and
belief update



Back at the dentist’s

Topology of network encodes
conditional independence assertions:

CEDEED

Weather is independent of the other variables

Toothache and Catch are conditionally independent of each
OTher glven CGV'TY @ D. Weld and D. Fox -7




Syntax

* aset of nodes, one per random variable
e adirected, acyclic graph (link ="directly influences")

e a conditional distribution for each node given its
parents: P (X. | Parents (X))

— For discrete variables, conditional probability table (CPT)=
distribution over X, for each combination of parent values



Burglars and Earthquakes

Pr(E=t) Pr(E=f)
0.002 0.998

% Ear"rhqu@

—— Pr(B=t) Pr(B=f)

0.001 0.999

Pr(A|E,B)

Pr(JC|A)

0.9 (0.1)
0.05 (0.95)

ol o

0.95 (0.05)
0.29 (0.71)
0.94 (0.06)
0.001 (0.999)

al 0.7 (0.3)

"al 0.01 (0.99)

Pr(MC|A)




Earthquake Example
(cont’d)

* If we know Alarm, no other evidence influences our
degree of belief in JohnCalls

— P(JC|MC,A,E,B) = P(JC|A)

—also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E)
* By the chain rule we have

P(JC,MC,A,E,B) = P(JC| MC,A,E,B) -P(MC|A,E,B)-

P(A|E,B) -P(E|B) -P(B)
=P(JC|A) -P(MC|A) -P(A|B,E) -P(E) -P(B)

* Full joint requires only 10 parameters (cf. 32)



Earthquake Example
(Global Semantics)

* We just proved
P(JC,MC,A,E,B) = P(JC|A) -P(MC|A) -P(A|B,E) -P(E) -P(B)
* In general full joint distribution of a Bayes net is defined as

P(X1, X 2,.., Xn) = H P(Xi | Par (X))



BNs: Qualitative Structure

* Graphical structure of BN ref
independence among variab

ects conditional
es

e Each variable Xisa node in t

ne DAG

* Edges denote direct probabilistic influence

— usually interpreted causally

— parents of X are denoted Par(X)

* Local semantics: X is conditionally independent of all

nondescendents given its parents

— Graphical test exists for more
— “Markov Blanket”

general independence



Given Parents, X is Independent of
Non-Descendants

@ D. Weld and D. Fox
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Examples

@Thqu@ Burglary




For Example

@Thqu@ Burglary
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For Example
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For Example




Given Markov Blanket, X is Independent of
All Other Nodes

MB(X) = Par(X) u Childs(X) U Par'(Chllds(X))

@ D. Weld and D. Fox



For Example




For Example
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d-Separation

* An undirected path between two nodes is “cut
off” if information cannot flow across one of
the nodes in the path

 Two nodes are d-separated if every undirected
path between them is cut off

* Two sets of nodes are d-separated if every pair
of nodes, one from each set, is d-separated



d-Separation

Linear connection: Information can flow between A and C
if and only if we do not have evidence at B



For Example

@Thqu@ Burglary
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d-Separation (continued)

O—0—06

Diverging connection: Information can flow between A
and C if and only if we do not have evidence at B




For Example

@Thqu@ Burglary
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d-Separation (continued)

00—~
O

Converging connection: Information can flow between A
and C if and only if we do have evidence at B or any

descendent of B (such as D or E)




For Example

A ohnCalls @




d-Separation

* An undirected path between two nodes is “cut
off” if information cannot flow across one of
the nodes in the path

 Two nodes are d-separated if every undirected
path between them is cut off

* Two sets of nodes are d-separated if every pair
of nodes, one from each set, is d-separated



Note: For Some CPT Choices, More
Conditional Independences May Hold

* Suppose we have: 0 0 O

 Then only conditional independence we have is:
P(ALC | B)

* Now choose CPTs such that A must be True, B
must take same value as A, and C must take same

value as B

* In the resulting distribution P, all pairs of variables
are conditionally independent given the third



Bayes Net Construction Example

Suppose we choose the ordering M, J, A, B, E

P(J | M)=P()?

@ D. Weld and D. Fox
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Example

Suppose we choose the ordering M, J, A, B, E

.®

No
PA[J M)=P(A[J])? P(A|M)?P(A)?

@ D. Weld and D. Fox
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Example

Suppose we choose the ordering M, J, A, B, E
Qerycais)

=
D,
P(J| M)=pP(J)?
No
PA[J M)=P(A[J)?PA]J M)=P(A)? No
PB[|A JM)=PB|[A)?
P(B | A, J M)=P(B)?



Example

Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?
No

PA[|J M)=PA[J)?PA][J M)=P(A)? No
PB|A JM)=P(B|A)?Yes

P(B | A, J M)=P(B)? No

P(E| B, A,l, M)=P(E|A)?

P(E| B, A J M)=P(E | A, B)?




Example

Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?
No

PA[|J M)=PA[J)?PA][J M)=P(A)? No
PB|A JM)=P(B|A)?Yes

P(B | A, J M)=P(B)? No

P(E| B, A,]l, M)=P(E | A)?No

P(E| B, A J M)=P(E|A, B)? Yes




Example contd.

Burga

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Network is less compact: 1 +2 +4 + 2 + 4 = 13 numbers needed

@ D. Weld and D. Fox
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Example: Car Diaghosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

@ D. Weld and D. Fox - 38



Example: Car Insurance

-39
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Other Applications

Medical Diagnosis

Computational Biology and Bioinformatics
Natural Language Processing

Document classification

lmage processing

Decision support systems

Ecology & natural resource management
Robotics

Forensic science..,



Compact Conditionals

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV US V Mexican
E.g., numerical relationships among continuous variables
d Level

e inflow + precipitation - outflow - evaporation
ot

@ D. Weld and D. Fox
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Compact Conditionals

Noisy-OR distributions model multiple noninteracting causes
1) Parents U, .. .U} include all causes (can add leak node)
2) Independent failure probability g; for each cause alone

Cold Flu Malaria| P(Fever)| P(—Fever)

E F 3 0.0 1.0

F F ii 0.9 0.1

F i} F 0.8 0.2

F | i | 0.98 0.02= 02 x 0.1

| F F 0.4 0.6

i F T 0.94 0.06= 0.6 x 0.1

i i E 0.88 0:12=06 % 0.2

i i) T (0.988 0.012 =0.6:x 0.2 % 0.1

Number of parameters linear in number of parents

@ D. Weld and D. Fox
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Hybrid (discrete+cont) Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

subsidy? | Garvess
Ceost>

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)

@ D. Weld and D. Fox
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1: Continuous Child Variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.:

P(Cost =c|Harvest =h, Subsidy?=true)
= N(ah + by, 04)(c)

1 1 (c— (a,h +b,))2)

— —€IP | —5
o\ 2T ( 2 of

e

@ D. Weld and D. Fox <44



2 Discrete child — cont. parents

Probability of Buys? given C'ost should be a “soft” threshold:
l T T T T T

08
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a
ol

02}

0 1 1 1 1 1
0 2 1 6 8 10 12

Costc

Probit distribution uses integral of Gaussian:
®(z)= £, N(0,1)(x)dz

P(Buys?=true | Cost =c) = ®((—c+ u) /o)
-@ D. Weld and D. Fox .45



Why probit?

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

P
& @D G

= &
o] [

@ D. Weld and D. Fox
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Sigmoid Function

Sigmoid (or logit) distribution also used in neural networks:

P(Buys?=true | Cost =c) =

1

el —CL )
1 +exp —2—==)

Sigmoid has similar shape to probit but much longer tails:
1 T T T T

=false|Cost=c)

P(Buys?

09|
08
0.7
06}
05
04
03¢
02}
0.1F

0

0 2 4 6 8 10
Costc
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Inference in BNs

*The graphical independence representation

—vields efficient inference schemes

*We generally want to compute
—Marginal probability: Pr(Z),
—Pr(Z|E) where E is (conjunctive) evidence
e Z: query variable(s),
e E: evidence variable(s)

e everything else: hidden variable

* Computations organized by network topology



P(B | J=true, M=true)

@thqu@ Burglary

\ 7
'

/
(eryca

P(bljm)=a 2 P(b,j,m,e,a)

’
@ D. Weld and D. Fox




P(B | J=true, M=true)

@thqu@ Burglary

P(b|j,m) = aP(b) ZQlP(e) %P(al b,e)P(jla)P(m|a)

@ D. Weld and D. Fox



Variable Elimination
P(blj.m) = aP(b) ZP(e) ZP(alb,e)P(jla)P(m,a)

P(ulb,e)
95

P(=ulb=e)
06

Pf_lﬂilb,fj
.05

P(ulb,—e)
94

Pl

:.90 P(jl =) P(jla) P(jl—a)
: 05 90 05
) @) @) O
E?S”l ) Piml =) Pimla) P(ml—u)
01 70 01
O O O O

Repeated computations =» Dynamic Programmmg

-®@ D. Weld and D. Fox



Variable Elimination

*A factor is a function from some set of variables
into a specific value: e.g., f(E,A,N1)
—CPTs are factors, e.g., P(A/E,B) function of A,E,B

*VE works by eliminating all variables in turn until

there is a factor wit

*To eliminate a varia

n only query variable

ole:

—join all factors containing that variable (like DB)

—sum out the influence of the variable on new factor

—exploits product form of joint distribution



Example of VE: P(JC)

P(J)

=¥y ape P(J,M,AB,E)
=Xy ase P(JJA)P(M|A) P(B)P(A|B,E)P(E) \
=X,P(J|A) Z,P(M|A) Z;P(B) Z.P(A|B,E)P(E) @
=,P(J|A) Z,P(M]A) Z;P(B) f1(A,B) /

=2 ,P(J|A) Z,P(M|A) f2(A) @ @
= 2,P(JIA) f3(A)

= f4(J)

-®@ D. Weld and D. Fox -53



Notes on VE

*Each operation is a simple multiplication of factors
and summing out a variable

* Complexity determined by size of largest factor
—in our example, 3 vars (not 5)
—linear in number of vars,

—exponential in largest factor elimination ordering greatly
impacts factor size

—optimal elimination orderings: NP-hard
—heuristics, special structure (e.g., polytrees)

*Practically, inference is much more tractable using
structure of this sort



P(J)
=y age P(U;MABE)
= 2yase PUIA)P(B)P(A|B,E)P(E)P(M|A)

= Z,P(J|A) ZcP(B) ZcP(AIB,E)P(E):ZyP(M]A):

=3, P(J|A) Z.P(B) Z.P(A|B,E)P(E)
=3, P(J|A) Z.P(B) f1(A,B)

=3, P(J|A) f2(A)

= f3(J) M is irrelevant to the computation
Thm: Y is irrgleyant,unless Y € Ancestors(Z \J E)



Reducing 3-SAT to Bayes Nets

Theorem: Inference 1in a multi-connected
Bayesian network 1s NP-hard.

Boolean 3CNF formula ¢= (uv vv wiA (v w v y)
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prior probabilityl/2

Probability ( ': ) = 12" 3 satisfying assignments of ¢

& Jack Breese (Microzoft) & Daphine Koller (Stanford)
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Complexity of Exact Inference

e Exact inference is NP hard
— 3-SAT to Bayes Net Inference
— It can count no. of assignments for 3-SAT: #P complete

* |nference in tree-structured Bayesian network
— Polynomial time
— compare with inference in CSPs

* Approximate Inference
— Sampling based techniques



