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Need for Reasoning w/ Uncertainty

• The world is full of uncertainty
– chance nodes/sensor noise/actuator error/partial info..

– Logic is brittle
• can’t encode exceptions to rules

• can‘t encode statistical properties in a domain

– Computers need to be able to handle uncertainty

• Probability: new foundation for AI (& CS!)

• Massive amounts of data around today
– Statistics and CS are both about data

– Statistics lets us summarize and understand it

– Statistics is the basis for most learning

• Statistics lets data do our work for us
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Logic     vs. Probability
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Symbol: Q, R … Random variable: Q …

Boolean values: T, F Domain: you specify
e.g. {heads, tails} [1, 6]

State of the world: 
Assignment to Q, R … Z

Atomic event: complete
specification of world: Q… Z
• Mutually exclusive
• Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

Joint distribution: Prob.
of every atomic event



Probability Basics

• Begin with a set S: the sample space

– e.g., 6 possible rolls of a die.

• x ϵ S is a sample point/possible world/atomic event

• A probability space or probability model is a sample 
space with an assignment P(x) for every x s.t. 
0≤P(x)≤1 and ∑P(x) = 1

• An event A is any subset of S

– e.g. A= ‘die roll < 4’

• A random variable is a function from sample points 
to some range, e.g., the reals or Booleans



Types of Probability Spaces
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Axioms of Probability Theory

• All probabilities between 0 and 1

– 0 ≤ P(A) ≤ 1

– P(true) = 1        

– P(false) = 0.

• The probability of  disjunction is:
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Prior Probability
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Joint distribution can answer any question



Conditional probability
• Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all I know there is 80% chance of cavity

• Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

• If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) = 1

• New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional Probability 

• P(A | B) is the probability of A given B

• Assumes that B is the only info known.

• Defined by:

•© UW CSE AI Faculty •10

)(

)(
)|(

BP

BAP
BAP




A        
BAB

T
ru

e



Chain Rule/Product Rule

• P(X1, …, Xn) = P(Xn|X1..Xn-1)P(Xn-1|X1..Xn-2)… P(X1)

= ПP(Xi|X1,..Xi-1)



Dilemma at the Dentist’s
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What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?



Inference by Enumeration
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P(toothache)=.108+.012+.016+.064
= .20  or 20%



Inference by Enumeration
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P(toothachecavity) = .20 + ??.072 + .008

.28



Inference by Enumeration
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Complexity of Enumeration

• Worst case time: O(dn)

– Where d = max arity

– And n = number of random variables

• Space complexity also O(dn)  

– Size of joint distribution

• Prohibitive!
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Independence

• A and B are independent iff:
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• Therefore, if A and B are independent:



Independence
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Complete independence is powerful but rare
What to do if it doesn’t hold?



Conditional Independence
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Instead of 7 entries, only need 5



Conditional Independence II

•© UW CSE AI Faculty •20

P(catch | toothache,  cavity) = P(catch |  cavity)
P(catch | toothache,cavity) = P(catch |cavity)

Why only 5 entries in table?



Power of Cond. Independence

• Often, using conditional independence 
reduces the storage complexity of the joint 
distribution from exponential to linear!!

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments.
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Bayes Rule
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E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001, 
P(S) = 0.1, 
P(S|M)= 0.8

P(M|S) 

Computing Diagnostic Prob. from Causal Prob.



Other forms of Bayes Rule
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Conditional Bayes Rule
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Bayes’ Rule & Cond. Independence
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Simple Example of State Estimation

• Suppose a robot obtains measurement z

• What is P(doorOpen|z)?
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Causal vs. Diagnostic Reasoning

• P(open|z) is diagnostic.

• P(z|open) is causal.

• Often causal knowledge is easier to obtain.

• Bayes rule allows us to use causal knowledge:
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Example
• P(z|open) = 0.6 P(z|open) = 0.3

• P(open) = P(open) = 0.5
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• z raises the probability that the door is open.



Combining Evidence

• Suppose our robot obtains another observation z2.

• How can we integrate this new information?

• More generally, how can we estimate
P(x| z1...zn )?
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Recursive Bayesian Updating
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Example: Second Measurement 

• P(z2|open) = 0.5 P(z2|open) = 0.6

• P(open|z1)=2/3
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• z2 lowers the probability that the door is open.



These calculations seem 
laborious to do for each 
problem domain –

is there a general 
representation scheme for 
probabilistic inference?

Yes – Bayesian Networks


