Uncertainty
Chapter 13

Mausam
(Based on slides by UW-AI faculty)



Need for Reasoning w/ Uncertainty

The world is full of uncertainty

— chance nodes/sensor noise/actuator error/partial info..

— Logic is brittle
e can’t encode exceptions to rules
» can‘t encode statistical properties in a domain

— Computers need to be able to handle uncertainty
Probability: new foundation for Al (& CS!)

Massive amounts of data around today

— Statistics and CS are both about data

— Statistics lets us summarize and understand it
— Statistics is the basis for most learning

Statistics lets data do our work for us



Logic vs. Probability
Symbol: Q, R .. Random variable: Q ...
Domain: you specif
Bool lues: T Y pecity
oolean values: T, F e.g. {heads, tails} [1, 6]
State of the world: Atomic event: complete
Assignment to Q, R .. Z| specification of world: Q... Z

* Mutually exclusive
» Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

<@ (VW

Joint distribution: Prob.
of every atomic event
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Probability Basics

Begin with a set S: the sample space
— e.g., 6 possible rolls of a die.

X € S is a sample point/possible world/atomic event
A probability space or probability model is a sample

space with an assignment P(x) for every x s.t.
0<P(x)<1 and >P(x) =1

An event A is any subset of S

— e.g. A=‘dieroll < 4

A random variable is a function from sample points
to some range, e.g., the reals or Booleans



Types of Probability Spaces

Propositional or Boolean random variables
e.g., Cavity (do | have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of {sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables ( bounded or unbounded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Axioms of Probability Theory

* All probabilities between 0 and 1
— 0<P(A) <1
— P(true) =1
— P(false) = 0.

* The probability of disjunction is:

P(Av B) = P(A)+ P(B)— P(AA B)

AAB

True




Prior Probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity =true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = {0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.c
P(Weather, Cavity) = a 4 x 2 matrix of values:

Joint distribution can answer any question
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all | know there is 80% chance of cavity

Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) =1

New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional Probability

* P(A | B)is the probability of A given B
* Assumes that B is the only info known.

* Defined by: P(AA B)

P(A|B) = P(B)

A AAB B

True




Chain Rule/Product Rule

* P(Xy, s X ) = POX | X0 X )P(X 4 [ Xpe X ) P(X,)
= MP(X,| X,,..X: )



Dilemma at the Dentist’s
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What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| — catch catch| — catch

cavity | .108 | .012 .072] .008
= cavity | .016 | .064 144 .576

For any proposition ¢, sum the atomic events where it is true:
P{Ei}} — Eu:m'hgﬁpiw)

P(tfoothache)=.108+.012+.016+.064
= .20 or 20°/o
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Inference by Enumeration

Start with the joint distribution:

toothache

= toothache

cavity

catch | = catch | catch

108 | .012

072

= catch

.008

= cavity

.016| .064

144

276

For any proposition ¢, sum the atomic events where it is true:

P{EI}} — Eu‘.ml:-{_!:P{w)

P(foothachevcavity) = .20 + .072 + .008

.28
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| = catch catch| = catch
.008
576

cavity

= cavity

Can also compute conditional probabilities:

P(—cavity N toothache)

P(toothache)
0.016 4 0.064

= (.4
0.108 + 0.012 +- 0.016 + 0.064 <<

P(—cavity|toothache) =
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Complexity of Enumeration

* Worst case time: O(d")

— Where d = max arity

— And n = number of random variables
* Space complexity also O(d")

— Size of joint distribution

 Prohibitive!



Independence

* A and B are independent iff:

P(A|B) =
P(B] A) =

D(A) These two constraints are

logically equivalent

°(B)

* Therefore, if Aand Bare independent:

P(A|B) =

P(AA B)

p) M

P(AAB)=P(A)P(B)
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A B)=P(A)P(B)

Cavity
decomposes into \J 00thache Catch

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P (W eather)

Cavity
Toothache Catch

Weather

32 entries reduced to 12; for n independent biased coins, 2" — n

Complete independence is powerful but rare
What to do if it doesn't hold?
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Conditional Independence

P(Toothache, Cavity, Catch) has 2*° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't depend
on whether | have a toothache:

(1) P(catch|toothache, cavity) = P(catch|eavity)

The same independence holds if | haven't got a cavity:
(2) Pl(catchltoothache, ~cavity) = P(catch|—cavity)

Cuatch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Instead of 7 entries, only need 5
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Conditional Independence |

P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,—cavity) = P(catch |—cavity)

Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P (T oothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Why only 5 entries in table?

Write out full joint distribution using chain rule:
P (T oothache, Catch, Cavity)

= P(Toothache
= P(Toothache
= P(Toothache

Catch, Cavity)P(Catch, Cavity)
Catch, Cavity)P(Cuatch|Cavity)P(Cavity)
Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Power of Cond. Independence

e Often, using conditional independence
reduces the storage complexity of the joint
distribution from exponential to linear!!

* Conditional independence is the most basic &
robust form of knowledge about uncertain
environments.



Bayes Ru |e Bayes rules!

posterior

\P(X, y) =P(X]y)P(y) = P(y| X)P(x)
P(y|x) P(x) likelihood - prior
P(y) ~ evidence

\
P(x|y) =

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause) P(Cause)

P(Cause|E f fect) = P(Ef fect)
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Computing Diagnostic Prob. from Causal Prob.

P(Ef fect|Cause)P(Cause)

P(Cause|Ef fect) = P(Ef fect)

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001,
P(S) = 0.1,
P(SIM)= 0.8

P(M|S) - P(s|m)P(m) _ 0.8 x 0.0001

— (.0008
P(s) 0.1

Note: posterior probability of meningitis still very small!
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Other forms of Bayes Rule

P(y|x) P(x) likelihood -prior
P(y)  evidence
P(y|x) P(x)
S P(y[x) P(x)

P(x|y) =

P(x|y) =

P(x| y) = aP(y|x)P(x)
posterior oc likelihood - prior




Conditional Bayes Rule

P(y[x,2) P(x]|2)

P(y|z)
P(y|x,z) P(x,2)

P(x] y,z)=

P(x|y,z)=

2 P(yIx,z) P(x|z)

P(x|y,z) =aP(y|x,z)P(x]| z)



Bayes’ Rule & Cond. Independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty,...,Ef fect,) = P(Cause)ll,P(E f fect;|Cause)
‘j !‘ i.--"' F Y 3 H]
Total number of parameters is linear in n
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Simple Example of State Estimation

e Suppose a robot obtains measurement z
 What is P(doorOpen|z)?

L
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Causal vs. Diaghostic Reasoning

P(open|z) is diagnostic.

P(z|open) is~sausal.
Often causal knowle o mncinw b ~bhdain

count frequencies!

Bayes rule allows us to use causajknowledge:

P(z | open)P(open)

P(open|z) =
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Example

N P(zlgpen) =0.0 P(z|ﬁopen) =0.3
* P(open) = P(—open) = 0.5

P(z | open)P(open)

P(open|z) =
( p | ) P(Z | Operl) p(open) + P(Z | —|Open) p(—|0pen)

0.6-0.5 2

=—=0.67
0.6-0.5+0.3-0.5 3

P(open|z) =

* zraises the probability that the door is open.



Combining Evidence

* Suppose our robot obtains another observation z,.
* How can we integrate this new information?

* More generally, how can we estimate
P(x| z,...z,)?



Recursive Bayesian Updating
P(zn| X, 2a,...,20-1) P(X| Z1,...,Zn-1)
P(Zn|Zl ..... Zn—l)

Markov assumption: z, is independent of z,,...,z, ; if
we know x.
P(zn| X, 21,...,2n-1) P(X| Z1,...,2Zn-1)

P(zn|z1,...,20-1)
~ P(zn| xX) P(X| z3,...,20-1)
 P(|zy,...,20-1)
=a P(zn|X) P(X| z1,...,2n-1)
=a, , | [P@@]x) P(x)

Lyl se az Faculry .31

P(x|zy,...,20) =




Example: Second Measurement

R P(Zzlgpen) =05 P(zz|ﬁopen) = 0.6
* P(open|z;)=2/3

o (open | 2,.2,) = P(z, | open) P(open| 2)

P(z, | open) P(open | z,) + P(z, | —open) P(—open| z,)

1 2

_ 2 0.625
8

1
2

3
3
+ —-
5

w| k-

* Z,lowers the probability that the door is open.



These calculations seem
laborious to do for each
problem domain —

is there a general
representation scheme for

probabilistic inference?

Yes - Bayesian Networks



