Uncertainty

 Chapter 13Mausam

(Based on slides by UW-AI faculty)

Need for Reasoning w/ Uncertainty

- The world is full of uncertainty
- chance nodes/sensor noise/actuator error/partial info..
- Logic is brittle
- can't encode exceptions to rules
- can't encode statistical properties in a domain
- Computers need to be able to handle uncertainty
- Probability: new foundation for $\mathrm{AI}(\& \mathrm{CS}$!)
- Massive amounts of data around today
- Statistics and CS are both about data
- Statistics lets us summarize and understand it
- Statistics is the basis for most learning
- Statistics lets data do our work for us

Logic vs. Probability

Symbol: Q, R ...
Random variable: Q...

Boolean values: T, F
Domain: you specify e.g. \{heads, tails\} [1, 6]

State of the world: Atomic event: complete Assignment to $Q, R \ldots$ specification of world: Q... Z

- Mutually exclusive
- Exhaustive

Prior probability (aka Unconditional prob: P(Q)
Joint distribution: Prob. of every atomic event

Probability Basics

- Begin with a set S : the sample space
- e.g., 6 possible rolls of a die.
- $x \in S$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $P(x)$ for every x s.t. $0 \leq P(x) \leq 1$ and $\sum P(x)=1$
- An event A is any subset of S
- e.g. A= 'die roll < 4'
- A random variable is a function from sample points to some range, e.g., the reals or Booleans

Types of Probability Spaces

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather $=$ rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded) e.g., Temp $=21.6$; also allow, e.g., $T e m p<22.0$.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

- All probabilities between 0 and 1
$-0 \leq P(A) \leq 1$
$-P($ true $)=1$
$-\mathrm{P}($ false $)=0$.
- The probability of disjunction is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Prior Probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\langle 0.72,0.1,0.08,0.1\rangle \text { (normalized, i.e., sums to } 1)
$$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

Joint distribution can answer any question

Conditional probability

- Conditional or posterior probabilities
e.g., P(cavity | toothache) $=0.8$
i.e., given that toothache is all I know there is 80% chance of cavity
- Notation for conditional distributions:
$\mathbf{P}($ Cavity | Toothache $)=2$-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have $\mathrm{P}($ cavity | toothache, cavity) $=1$
- New evidence may be irrelevant, allowing simplification:
$\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is the only info known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Chain Rule/Product Rule

- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{n} \mid X_{1} . . X_{n-1}\right) P\left(X_{n-1} \mid X_{1} . . X_{n-2}\right) \ldots P\left(X_{1}\right)$

$$
=\Pi P\left(X_{i} \mid X_{1}, . . X_{i-1}\right)
$$

Dilemma at the Dentist's

What is the probability of a cavity given a toothache? What is the probability of a cavity given the probe catches?

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\Sigma_{\omega: \omega \mid=\phi} P(\omega)
$$

$P($ toothache $)=.108+.012+.016+.064$

$$
=.20 \text { or } 20 \%
$$

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\Sigma_{\omega: \omega=\phi} P(\omega)
$$

$P($ toothachevcavity $)=.20+.072+.008$
. 28

Inference by Enumeration

Start with the joint distribution:

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Complexity of Enumeration

- Worst case time: $O\left(d^{n}\right)$
- Where d = max arity
- And $n=$ number of random variables
- Space complexity also $O\left(d^{n}\right)$
- Size of joint distribution
- Prohibitive!

Independence

- A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

- Therefore, if A and B are independent:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A) \\
& P(A \wedge B)=P(A) P(B) \\
& \text { OUN CSE AI Facutry }
\end{aligned}
$$

Independence

A and B are independent iff

$\mathbf{P}($ Toothache, Catch, Cavity, Weather $)$ $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Complete independence is powerful but rare What to do if it doesn't hold?

Conditional Independence

$\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Instead of 7 entries, only need 5

Conditional Independence II

$P($ catch \mid toothache, cavity $)=P($ catch | cavity $)$ $P\left(\right.$ catch | toothache, $_$cavity $)=P($ catch \mid-cavity $)$

Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$
Why only 5 entries in table?
Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch, Cavity $)$
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
l.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

Power of Cond. Independence

- Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic \& robust form of knowledge about uncertain environments.

Bayes Rule

Bayes rules!

posterior

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(E f f e c t \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

Computing Diagnostic Prob. from Causal Prob.

$$
\begin{aligned}
& P(\text { Cause } \mid E f f e c t)=\frac{P(E f f e c t \mid C a u s e) P(\text { Cause })}{P(E f f e c t)} \\
& \text { E.g. let } \mathbf{M} \text { be meningitis, } \boldsymbol{S} \text { be stiff neck } \\
& P(\mathbf{M})=0.0001, \\
& P(\mathbf{S})=0.1, \\
& P(S \mid M)=0.8 \\
& P(M \mid S)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
\end{aligned}
$$

Note: posterior probability of meningitis still very small!

Other forms of Bayes Rule

$$
\begin{aligned}
& P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }} \\
& P(x \mid y)=\frac{P(y \mid x) P(x)}{\sum_{x} P(y \mid x) P(x)} \\
& P(x \mid y)=\alpha P(y \mid x) P(x) \\
& \text { posterior } \propto \text { likelihood } \cdot \text { prior }
\end{aligned}
$$

Conditional Bayes Rule

$$
\begin{aligned}
& P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)} \\
& P(x \mid y, z)=\frac{P(y \mid x, z) P(x, z)}{\sum_{x} P(y \mid x, z) P(x \mid z)} \\
& P(x \mid y, z)=\alpha P(y \mid x, z) P(x \mid z)
\end{aligned}
$$

Bayes' Rule \& Cond. Independence

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache } \wedge \text { catch }) \\
& \quad=\alpha \mathbf{P}(\text { toothache } \wedge \text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& \quad=\alpha \mathbf{P}(\text { toothache } \mid \text { Cavity }) \mathbf{P}(\text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause }, E f f^{2} t_{1}, \ldots, E \text { ffect }_{n}\right)=\mathbf{P}(\text { Cause }) \Pi_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P($ doorOpen $/ z$)?

Causal vs. Diagnostic Reasoning

- $P(o p e n / z)$ is diagnostic.
- $P(z / o p e n)$ is causal.
- Often causal knowledge :- moninn+_ mhtain count frequencies!
- Bayes rule allows us to use causayknowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

Example

- $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$

$$
\begin{aligned}
& P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
& P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67
\end{aligned}
$$

- zraises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_{2}.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Recursive Bayesian Updating

$$
P\left(x \mid z 1, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption: z_{n} is independent of $z_{1, \ldots, z_{n-1}}$ if

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\alpha P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\
& =\alpha_{1 \ldots n} \prod_{i=1, l_{w n} n_{C S E} \text { AI Faculty }} P\left(z_{i} \mid x\right) P(x)
\end{aligned}
$$

Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5$

$$
P\left(z_{2} \mid \neg \text { open }\right)=0.6
$$

- $P\left(\right.$ open $\left.\mid z_{1}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
\end{aligned}
$$

- z_{2} lowers the probability that the door is open.

These calculations seem laborious to do for each problem domain -
 is there a general representation scheme for probabilistic inference?

Yes - Bayesian Networks

