Monte Carlo Tree Search

(Slides by Alan Fern, Aditya Gopalan, Subbarao Kambhampati, Lisa Torrey, Dan Weld)

Learning/Planning/Acting

Planning Monte-Carlo Planning Reinforcement Learning

Motivation

- Domain experts devise the simulator but don't understand AI languages
- Probability distributions not easily expressible in Al languages
- Successor functions too large to be represented declaratively
- Domain models hidden from control person

Monte-Carlo Planning

- Often a simulator of a planning domain is available or can be learned from data
 - Even when domain can't be expressed via MDP language

Klondike Solitaire

Fire & Emergency Response

Example Domains with Simulators

- Traffic simulators
- Robotics simulators
- Military campaign simulators
- Computer network simulators
- Emergency planning simulators
 - large-scale disaster and municipal
- Sports domains (Madden Football)
- Board games / Video games
 - Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art performance. Even in domains where model-based planner is applicable.

Slot Machines as MDP?

Outline

- Uniform Sampling
 - PAC Bound for Single State MDPs
 - Policy Rollouts for full MDPs
- Adaptive Sampling
 - UCB for Single State MDPs
 - UCT for full MDPs

Single State Monte-Carlo Planning

- Suppose MDP has a single state and k actions
 - Figure out which action has best expected reward
 - Can sample rewards of actions using calls to simulator
 - Sampling a is like pulling slot machine arm with random payoff function R(s,a)

Multi-Armed Bandit Problem

PAC Bandit Objective

Probably Approximately Correct (PAC)

- Select an arm that probably (w/ high probability, 1- δ) has approximately (i.e., within ϵ) the best expected reward
- Use as few simulator calls (or pulls) as possible

Multi-Armed Bandit Problem

UniformBandit Algorithm

NaiveBandit from [Even-Dar et. al., 2002]

- 1. Pull each arm **w** times (uniform pulling).
- 2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

Aside: Additive Chernoff Bound

- Let R be a random variable with maximum absolute value Z.
 An let r_i (for i=1,...,w) be i.i.d. samples of R
- The Chernoff bound gives a bound on the probability that the average of the r_i are far from E[R]

Chernoff
Bound
$$\Pr\left(\left|E[R] - \frac{1}{w}\sum_{i=1}^{w}r_i\right| \ge \varepsilon\right) \le \exp\left(-\left(\frac{\varepsilon}{Z}\right)^2 w\right)$$

Equivalently:

With probability at least
$$1-\delta$$
 we have that,

$$\left| E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i \right| \leq Z \sqrt{\frac{1}{w} \ln \frac{1}{\delta}}$$

UniformBandit PAC Bound

With a bit of algebra and Chernoff bound we get:

If
$$w \ge \left(\frac{R_{\max}}{\varepsilon}\right)^2 \ln \frac{k}{\delta}$$
 for all arms simultaneously

$$\left| E[R(s, a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \le \varepsilon$$
with probability at least $1 - \delta$

- That is, estimates of all actions are E-accurate with probability at least 1- S
- Thus selecting estimate with highest value is approximately optimal with high probability, or PAC

Simulator Calls for UniformBandit

• Total simulator calls for PAC:

$$k \cdot w = O\left(\frac{k}{\varepsilon^2} \ln \frac{k}{\delta}\right)$$

 Can get rid of ln(k) term with more complex algorithm [Even-Dar et. al., 2002].

Outline

- Uniform Sampling
 - PAC Bound for Single State MDPs
 - Policy Rollouts for full MDPs
- Adaptive Sampling
 - UCB for Single State MDPs
 - UCT for full MDPs

Policy Improvement via Monte-Carlo

- Now consider a multi-state MDP.
- Suppose we have a simulator and a non-optimal policy
 - E.g. policy could be a standard heuristic or based on intuition
- Can we somehow compute an improved policy?

Policy Rollout Algorithm

- 1. For each a_i , run SimQ(s, a_i , π ,h) **w** times
- 2. Return action with best average of SimQ results

Policy Rollout: # of Simulator Calls

- For each action, w calls to SimQ, each using h sim calls
- Total of khw calls to the simulator

Multi-Stage Rollout

- Two stage: compute rollout policy of rollout policy of π
- Requires (khw)² calls to the simulator for 2 stages
- In general exponential in the number of stages

Rollout Summary

• We often are able to write simple, mediocre policies

- Network routing policy
- Compiler instruction scheduling
- Policy for card game of Hearts
- Policy for game of Backgammon
- Solitaire playing policy
- Game of GO
- Combinatorial optimization
- Policy rollout is a general and easy way to improve upon such policies
- Often observe substantial improvement!

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec
3 rollout	56.83%	1.5 min
4 rollout	60.51%	18 min
5 rollout	70.20%	1 hour 45 min

Deeper rollout can pay off, but is expensive

Outline

- Uniform Sampling
 - PAC Bound for Single State MDPs
 - Policy Rollouts for full MDPs
- Adaptive Sampling
 - UCB for Single State MDPs
 - UCT for full MDPs

Non-Adaptive Monte-Carlo

- What is an issue with Uniform sampling?
 - time wasted equally on all actions!
 - no early learning about suboptimal actions
- Policy rollouts
 - Devotes equal resources to each state encountered in the tree
 - Would like to focus on most promising parts of tree

But how to control exploration of new parts of tree??

Regret Minimization Bandit Objective

- Problem: find arm-pulling strategy such that the expected total reward at time n is close to the best possible (i.e. pulling the best arm always)
 - UniformBandit is poor choice --- waste time on bad arms
 - Must balance exploring machines to find good payoffs and exploiting current knowledge

UCB Adaptive Bandit Algorithm (Exploration Function)

[Auer, Cesa-Bianchi, & Fischer, 2002]

- Q(a) : average payoff for action a based on current experience
- n(a) : number of pulls of arm a
- Action choice by UCB after n pulls: in [0,1]

 $a^* = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$

Assumes payoffs

Value Term:

favors actions that looked good historically

Exploration Term: actions get an exploration bonus that grows with ln(n)

Doesn't waste much time on sub-optimal arms unlike uniform!

Upper Confidence Bound

Idea 1: Consider variance of estimates!
Idea 2: Be optimistic under uncertainty!

UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

$$a^* = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

Theorem: expected number of pulls of sub-optimal arm **a** is bounded by:

- Hence, the expected regret after n arm pulls compared to optimal behavior is bounded by O(log n)
- No algorithm can achieve a better loss rate

Outline

- Uniform Sampling
 - PAC Bound for Single State MDPs
 - Policy Rollouts for full MDPs
- Adaptive Sampling
 - UCB for Single State MDPs
 - UCT for full MDPs

UCB Based Policy_Rollout

- Allocate samples non-uniformly
 - based on UCB action selection
 - More sample efficient than uniform policy rollout
 - Still suboptimal.

- Instance of Monte-Carlo Tree Search
 - Applies principle of UCB
 - Some nice theoretical properties
 - Better than policy rollouts asymptotically optimal
 - Major advance in computer Go
- Monte-Carlo Tree Search
 - Repeated Monte Carlo simulation of a rollout policy
 - Each rollout adds one or more nodes to search tree
- Rollout policy depends on nodes already in tree

At a leaf node perform a random rollout

Current World State Initially tree is single leaf

Must select each action at a node at least once

Must select each action at a node at least once

Rollout policy?

- Basic UCT uses random rollout policy
- Tree policy is based on UCB:
 - Q(s,a) : average reward received in current trajectories after taking action a in state s
 - n(s,a) : number of times action a taken in s
 - n(s) : number of times state s encountered

$$\pi_{UCT}(s) = \arg\max_{a} Q(s,a) + c \sqrt{\frac{\ln n(s)}{n(s,a)}}$$

Theoretical constant that must be selected empirically in practice

Current World State

UCT Recap

- To select an action at a state s
 - Build a tree using N iterations of monte-carlo tree search
 - Default policy is uniform random
 - Tree policy is based on UCB rule
 - Select action that maximizes Q(s,a) (note that this final action selection does not take the exploration term into account, just the Q-value estimate)
- The more simulations the more accurate

Computer Go

9x9 (smallest board)

19x19 (largest board)

"Task Par Excellence for AI" (Hans Berliner)
 "New Drosophila of AI" (John McCarthy)
 "Grand Challenge Task" (David Mechner)

Game of Go

human champions refuse to compete against computers, because software is <u>too bad</u>.

	Chess	Go
Size of board	8 x 8	19 x 19
Average no. of moves per game	100	300
Avg branching factor per turn	35	235
Additional complexity		Players can pass

A Brief History of Computer Go

- *2005*: Computer Go is impossible!
- 2006: UCT invented and applied to 9x9 GO (Kocsis, Szepesvari; Gelly et al.)
- 2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)
- 2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)
- ELO rating 1800 \rightarrow 2600

UCT \rightarrow World Class 9x9 Go Player

• UCT + Value Function Approximation + RAVE

- Value function approximation
 Provides an initial estimate of V(s) via a heuristic
- RAVE

generalizes the tree policy to new states

Rapid Action Value Estimation (RAVE)

- Goal: information sharing within tree policy
- Typically

 $Q(s,a) = AVG[q^1(s,a), q^2(s,a), ...]$

RAVE value

 $Q(s,a) = AVG[q^1(s,a), q^2(s,a), ..., q^1(s'a), q^2(s',a)...]$ (for all s' in the subtree of s)

RAVE: quick information transfer but error prone

Master level 9x9 GO

- UCT + RAVE
 - Rely on RAVE initially and gradually shift to real value
 - Using linear combination with decaying RAVE weight
- UCT + RAVE + FN APPROX
 - Initialize RAVE value as the function approx. value
 - Initialize n(s,a) based on the confidence of fn approx.
- Observation: UCT depends heavily on quality of function approximation.
- 3-dan (master) level performance in 9x9 GO.
 - First program to beat a human in 9x9 GO
 - Best software in 19x19 GO ~2008.

Other Successes

- Klondike Solitaire (wins 40% of games)
- General Game Playing Competition
- Real-Time Strategy Games
- Combinatorial Optimization
- Probabilistic Planning (MDPs)
- Usually extend UCT is some ways

Improvements/Issues

- Use domain knowledge to improve the base policies
 - E.g.: don't choose obvious stupid actions
 - better policy does not imply better UCT performance
- Learn a heuristic function to evaluate positions
 Use heuristic to initialize leaves
- Interesting question: UCT versus minimax

Summary

• Multi-armed Bandits

Principles of both RL and Monte-Carlo

- Monte-Carlo Planning

 Exploration/Exploitation tradeoff
 Uniform/Adaptive Sampling
- Value Function Approximation
- RAVE heuristic in Go.