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Stochastic Planning: MDPs
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Partially Observable MDPs
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Stochastic, Fully Observable
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Stochastic, Partially Observable
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POMDPs

 In POMDPs we apply the very same idea as in MDPs.

 Since the state is not observable, 

the agent has to make its decisions based on the belief state 

which is a posterior distribution over states.

 Let b be the belief of the agent about the current state

 POMDPs compute a value function over belief space:

γa b, a
a
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POMDPs

 Each belief is a probability distribution, 

• value fn is a function of an entire probability distribution.

 Problematic, since probability distributions are continuous.

 Also, we have to deal with huge complexity of belief spaces.

 For finite worlds with finite state, action, and observation 

spaces and finite horizons, 

• we can represent the value functions by piecewise linear 

functions. 
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Applications

 Robotic control

• helicopter maneuvering, autonomous vehicles

• Mars rover - path planning, oversubscription planning

• elevator planning

 Game playing - backgammon, tetris, checkers

 Neuroscience

 Computational Finance, Sequential Auctions

 Assisting elderly in simple tasks

 Spoken dialog management

 Communication Networks – switching, routing, flow control

 War planning, evacuation planning
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An Illustrative Example
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The Parameters of the Example

 The actions u1 and u2 are terminal actions.

 The action u3 is a sensing action that potentially leads to a 

state transition.

 The horizon is finite and =1.
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Payoff in POMDPs

 In MDPs, the payoff (or return) depended on 
the state of the system.

 In POMDPs, however, the true state is not 
exactly known.

 Therefore, we compute the expected payoff by 
integrating over all states: 

11



Payoffs in Our Example (1)

 If we are totally certain that we are in state x1 and execute 

action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we are in x2

and execute u1, the reward is +100.

 In between it is the linear combination of the extreme 

values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1

 Given we have a finite POMDP with T=1, we 
would use V1(b) to determine the optimal policy.

 In our example, the optimal policy for T=1 is

 This is the upper thick graph in the diagram.
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Piecewise Linearity, Convexity

 The resulting value function V1(b) is the maximum 

of the three functions at each point

 It is piecewise linear and convex.
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Pruning

 If we carefully consider V1(b), we see that only the 

first two components contribute. 

 The third component can therefore safely be 

pruned away from V1(b).
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

V1(b)
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using Bayes 
rule. 
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Value Function

b’(b|z1)

V1(b)

V1(b|z1) 19



Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using Bayes 
rule. 

 Thus V1(b |  z1) is given by 
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Expected Value after Measuring

 Since we do not know in advance what the next 

measurement will be, we have to compute the 

expected belief
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Expected Value after Measuring

 Since we do not know in advance what the next 

measurement will be, we have to compute the 

expected belief
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Resulting Value Function

 The four possible combinations yield the following 
function which then can be simplified and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)

\bar{V}1(b)
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State Transitions (Prediction)

 When the agent selects u3 its state potentially 

changes. 

 When computing the value function, we have 

to take these potential state changes into 

account.
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Resulting Value Function after executing u3

 Taking the state transitions into account, we 

finally obtain.
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Value Function after executing u3

\bar{V}1(b)

\bar{V}1(b|u3)
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Value Function for T=2

 Taking into account that the agent can either 

directly perform u1 or u2 or first u3 and then u1

or u2, we obtain (after pruning)
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Graphical Representation 
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Deep Horizons and Pruning

 We have now completed a full backup in belief 

space.

 This process can be applied recursively. 

 The value functions for T=10 and T=20 are
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Deep Horizons and Pruning
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Why Pruning is Essential

 Each update introduces additional linear components to V.

 Each measurement squares the number of linear 

components. 

 Thus, an unpruned value function for T=20 includes more 

than 10547,864 linear functions.  

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in comparison, 

contains only 12 linear components.

 The combinatorial explosion of linear components in the 

value function are the major reason why POMDPs are 

impractical for most applications.
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POMDP Summary

 POMDPs compute the optimal action in 
partially observable, stochastic domains.

 For finite horizon problems, the resulting value 
functions are piecewise linear and convex. 

 In each iteration the number of linear 
constraints grows exponentially.

 POMDPs so far have only been applied 
successfully to very small state spaces with 
small numbers of possible observations and 
actions. 
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