Advanced MDP Algorithms

Mausam

$VI \rightarrow Asynchronous VI$

- Is backing up *all* states in an iteration essential?
 - No!
- States may be backed up
 - as many times
 - in any order
- If no state gets starved
 - convergence properties still hold!!

Residual wrt Value Function V (*Res*^V)

- Residual at s with respect to V
 - magnitude($\Delta V(s)$) after one Bellman backup at s

$$Res^{V}(s) = \left| V(s) - \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') [\mathcal{C}(s, a, s') + V(s')] \right|$$

- Residual wrt respect to V
 - max residual
 - Res^V = max_s (Res^V(s)) +

Res^v<€ (**∈-consistency**)

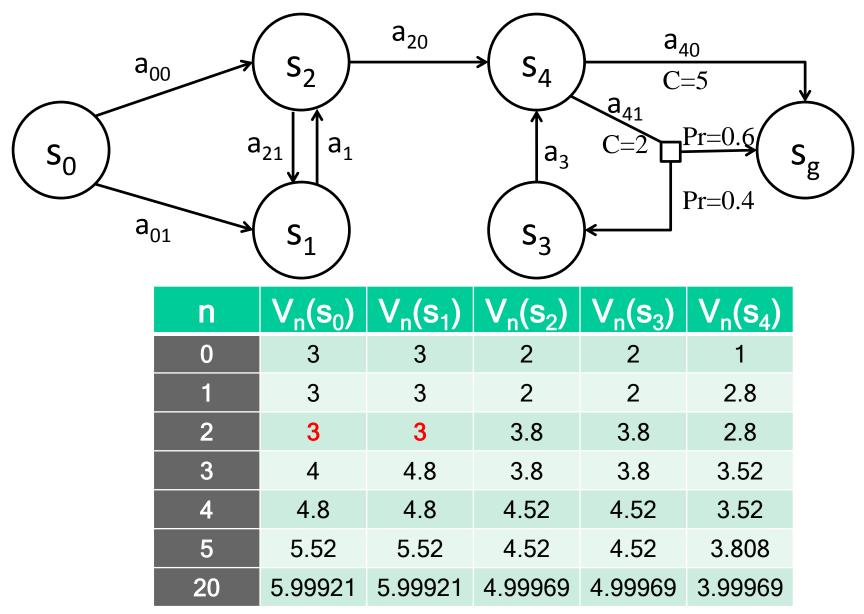
(General) Asynchronous VI

- 1 initialize V arbitrarily for each state
- 2 while $Res^V > \epsilon$ do
- 3select a state s4Ompute V(s) using a Bellman backup at s5update $Res^V(s)$ REVISE
- 6 end
- 7 return greedy policy π^V

Prioritization of Bellman Backups

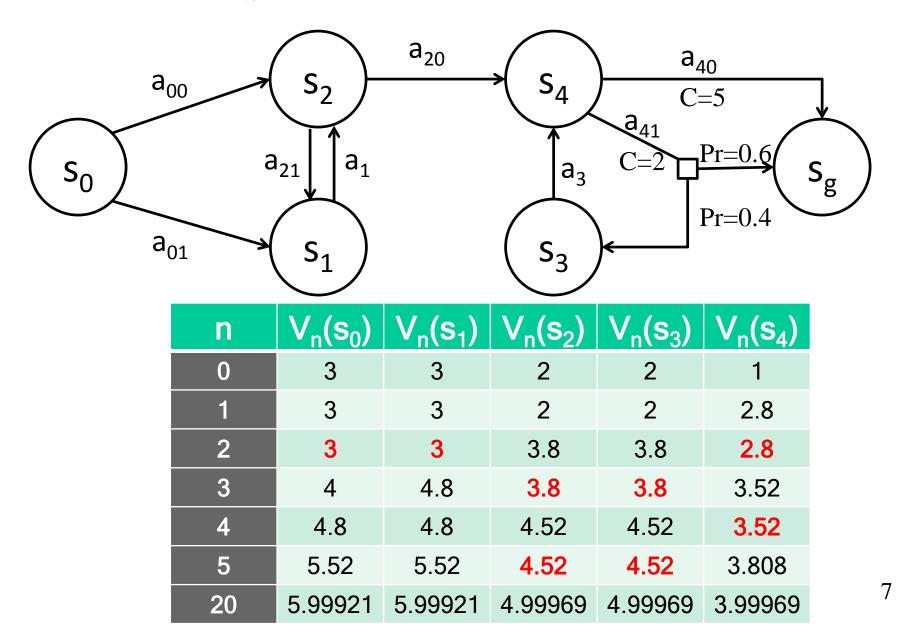
- Are all backups equally important?
- Can we avoid some backups?
- Can we schedule the backups more appropriately?

Useless Backups?



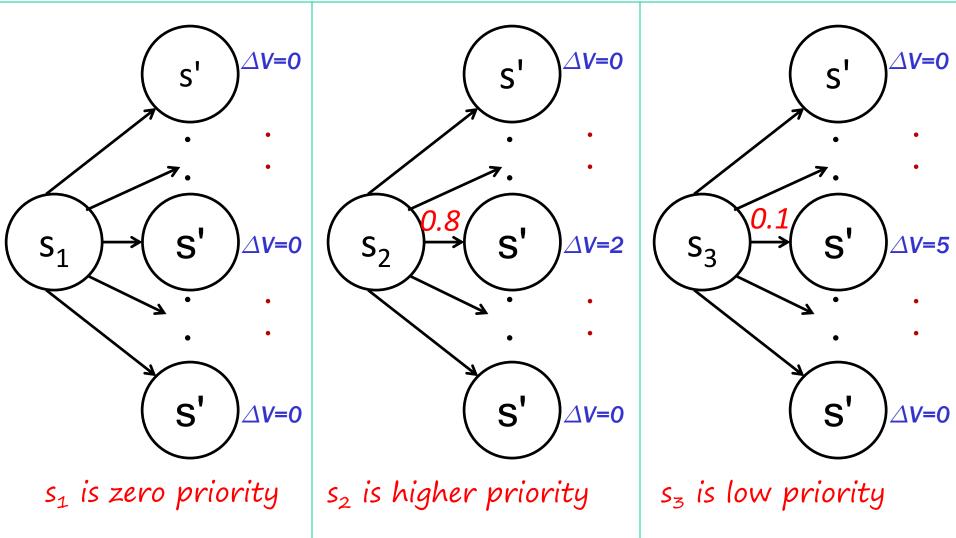
6

Useless Backups?




```
initialize V
 1
 \mathbf{2}
   repeat
 3
        select state s'
 4
        compute V(s') using a Bellman backup at s'
 5
        foreach predecessor s of s', i.e., \{s | \exists a[\mathcal{T}(s, a, s') > 0]\} do
 6
             compute priority(s)
 \mathbf{7}
             q.push(s, priority(s))
 8
        end
 9
10 until termination;
11 return greedy policy \pi^V
```

Which state to prioritize?



Prioritized Sweeping

$$\text{priority}_{PS}(s) = \max\left\{\text{priority}_{PS}(s), \max_{a \in \mathcal{A}} \{\mathcal{T}(s, a, s') Res^{V}(s')\}\right\}$$

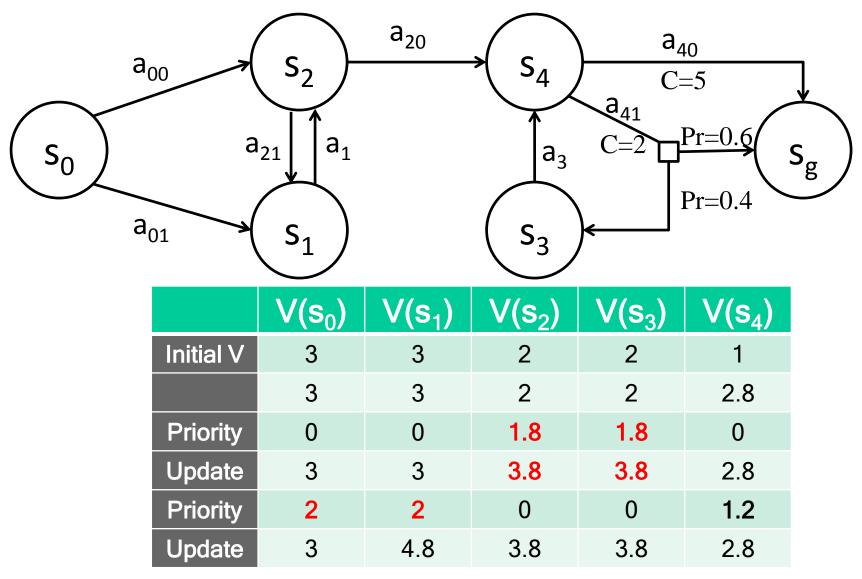
• Convergence [Li&Littman 08]

Prioritized Sweeping converges to optimal in the limit,

if all initial priorities are non-zero.

(does not need synchronous VI iterations)

Prioritized Sweeping



Limitations of VI/Extensions

- Scalability
 - Memory linear in size of state space
 - Time at least polynomial or more
- Polynomial is good, no?
 - state spaces are usually huge.
 - if *n* state vars then 2ⁿ states!
- Curse of Dimensionality!

Heuristic Search

- Insight 1
 - knowledge of a start state to save on computation
 ~ (all sources shortest path → single source shortest
 path)
- Insight 2
 - additional knowledge in the form of heuristic function

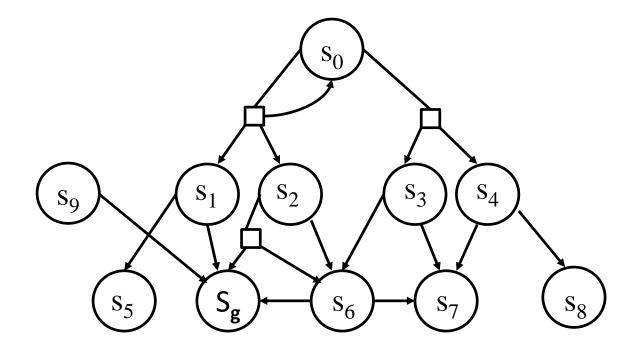
~ (dfs/bfs \rightarrow A*)

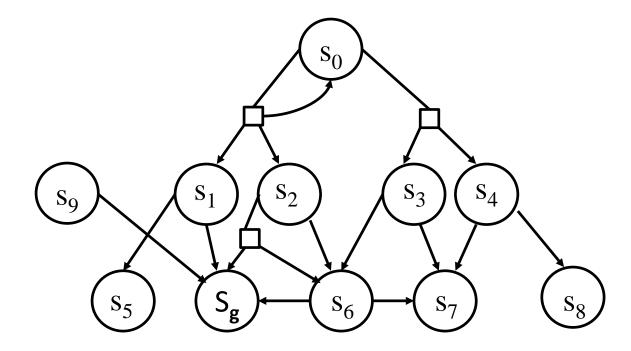
- MDP with an additional start state s₀
 - denoted by MDP_{s0}

- What is the solution to an MDP_{s0}
- Policy $(S \rightarrow A)$?
 - are states that are not reachable from s₀ relevant?
 - states that are never visited (even though reachable)?

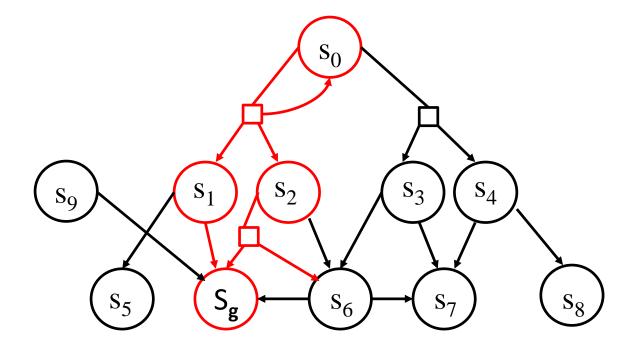
Partial Policy

- Define Partial policy
 - $\pi: S' \to A$, where $S' \subseteq S$
- Define Partial policy closed w.r.t. a state s.
 - is a partial policy π_s
 - defined for all states s' reachable by π_s starting from s

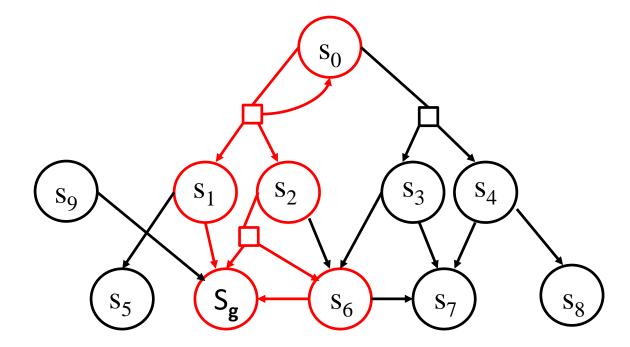




Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$

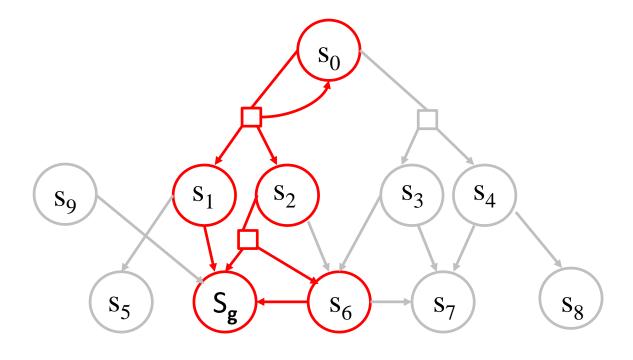


Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$



Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$ $\pi_{s0}(s_6) = a_1$

Policy Graph of π_{s0}



 $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$ $\pi_{s0}(s_6) = a_1$

Greedy Policy Graph

- Define greedy policy: $\pi^V = \operatorname{argmin}_a Q^V(s,a)$
- Define greedy partial policy rooted at s₀
 - Partial policy rooted at s₀
 - Greedy policy
 - denoted by π^V_{s0}
- Define greedy policy graph
 - Policy graph of π^V_{s0} : denoted by G^V_{s0}

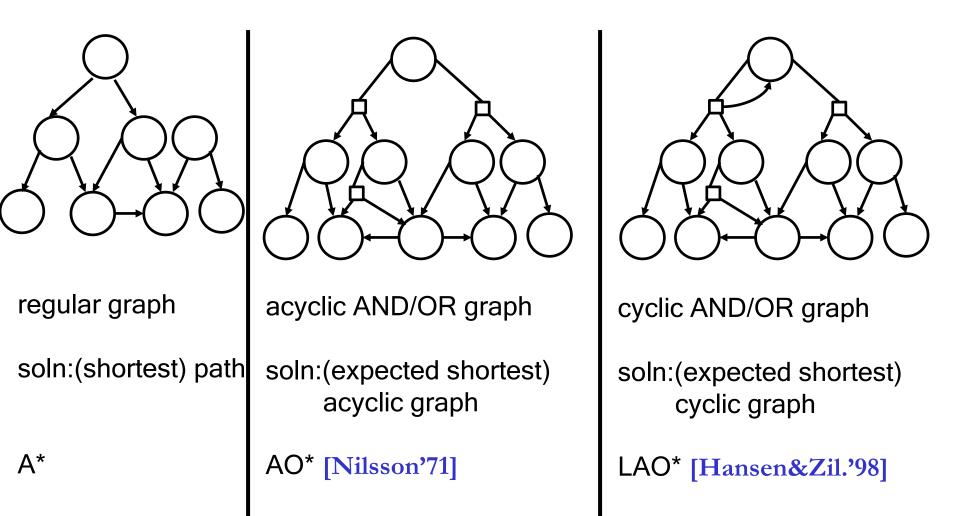
Heuristic Function

- h(s): S→R
 - estimates V*(s)
 - gives an indication about "goodness" of a state
 - usually used in initialization $V_0(s) = h(s)$
 - helps us avoid seemingly bad states
- Define *admissible* heuristic
 - optimistic
 - $h(s) \leq V^*(s)$

A General Scheme for Heuristic Search in MDPs

- Two (over)simplified intuitions
 - Focus on states in greedy policy wrt V rooted at s₀
 - Focus on states with residual > ϵ
- Find & Revise:
 - repeat
 - find a state that satisfies the two properties above
 - revise: perform a Bellman backup
 - until no such state remains

$A^* \rightarrow LAO^*$



All algorithms able to make effective use of reachability information!

LAO* Family

add s_0 to the fringe and to greedy policy graph

repeat

- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- choose a subset of affected states
- REVISE: perform some Bellman backups on this subset
- recompute the greedy graph

until greedy graph has no fringe & residuals in greedy graph small

output the greedy graph as the final policy

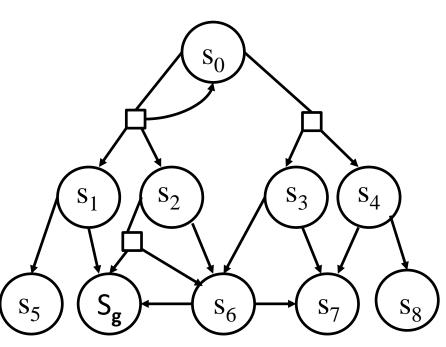
add s_0 to the fringe and to greedy policy graph

repeat

- FIND: expand best state s on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- REVISE: perform VI on this subset
- recompute the greedy graph

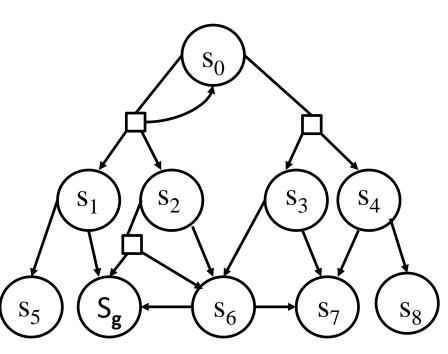
until greedy graph has no fringe & residuals in greedy graph small

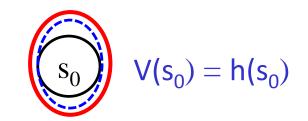
output the greedy graph as the final policy



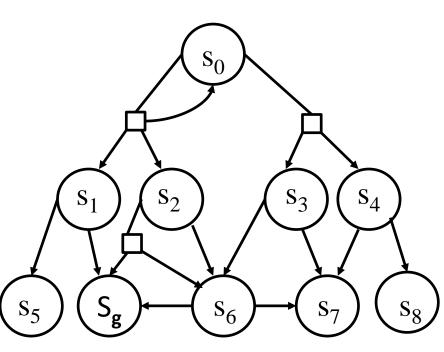
add s_0 in the fringe and in greedy graph

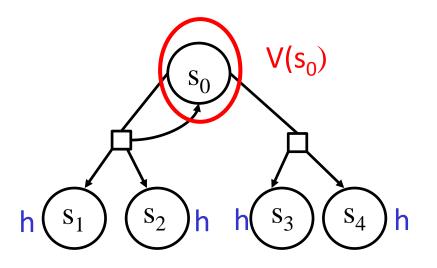
s₀ $V(s_0) = h(s_0)$



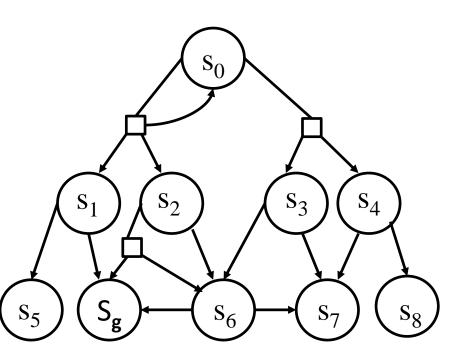


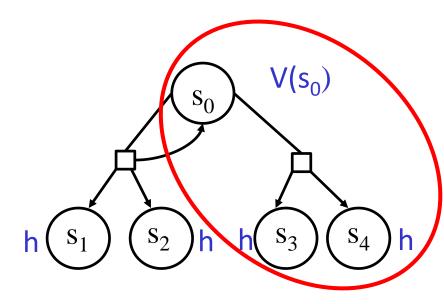
FIND: expand some states on the fringe (in greedy graph)





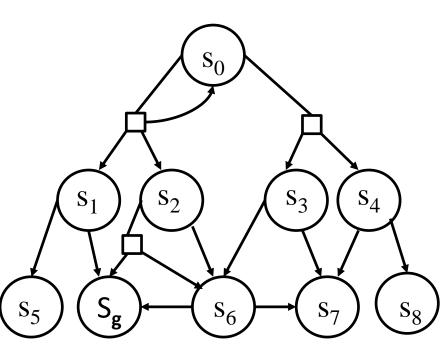
FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset

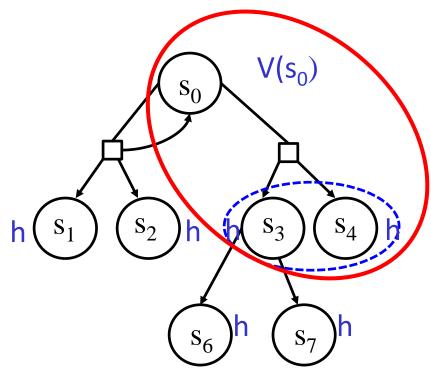




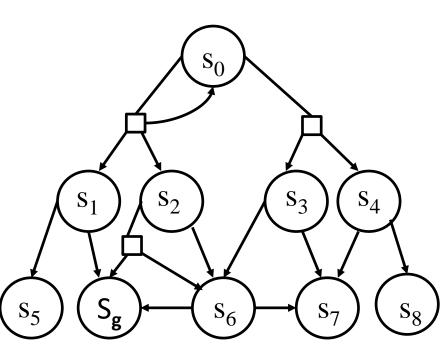
FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset

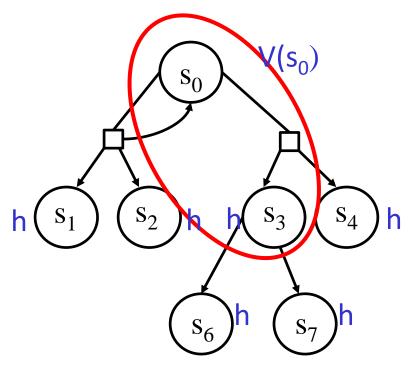
recompute the greedy graph



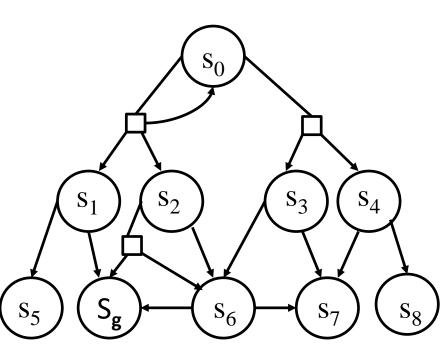


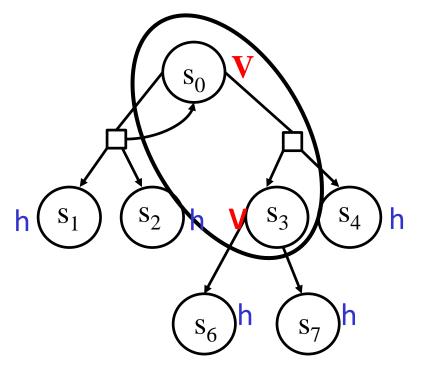
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph



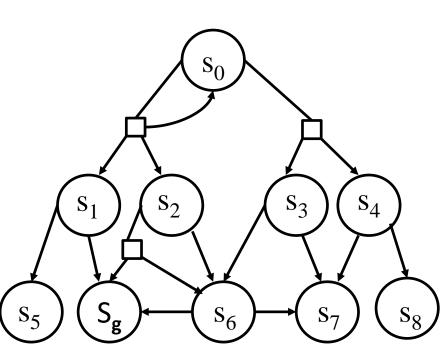


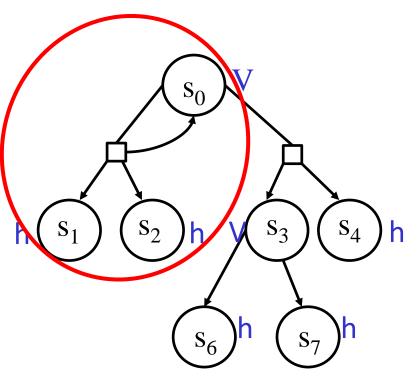
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph



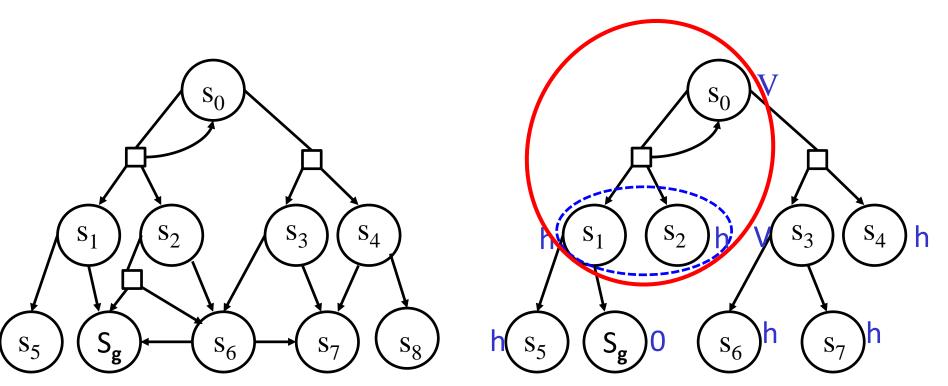


- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph

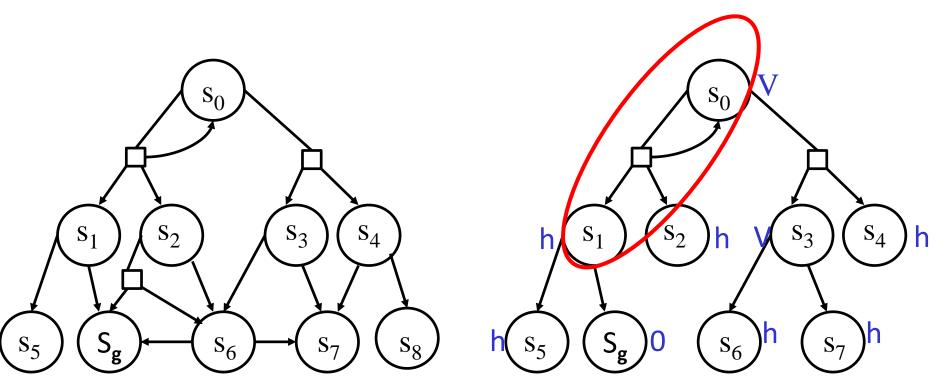




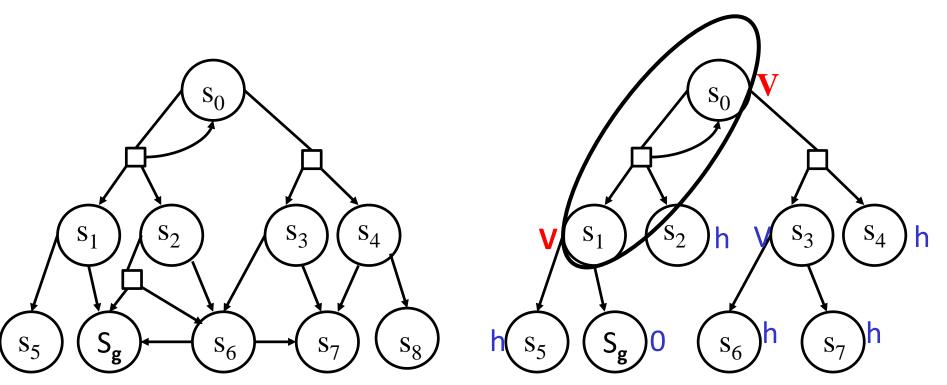
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph



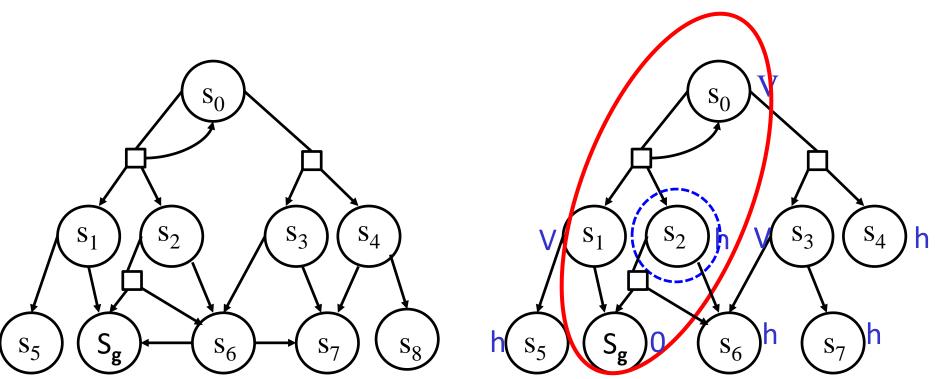
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph



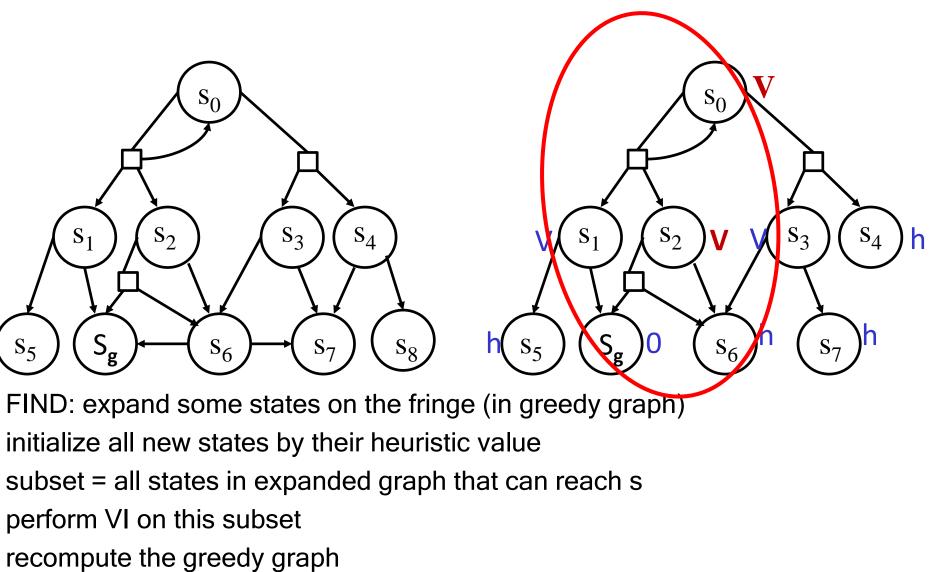
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph

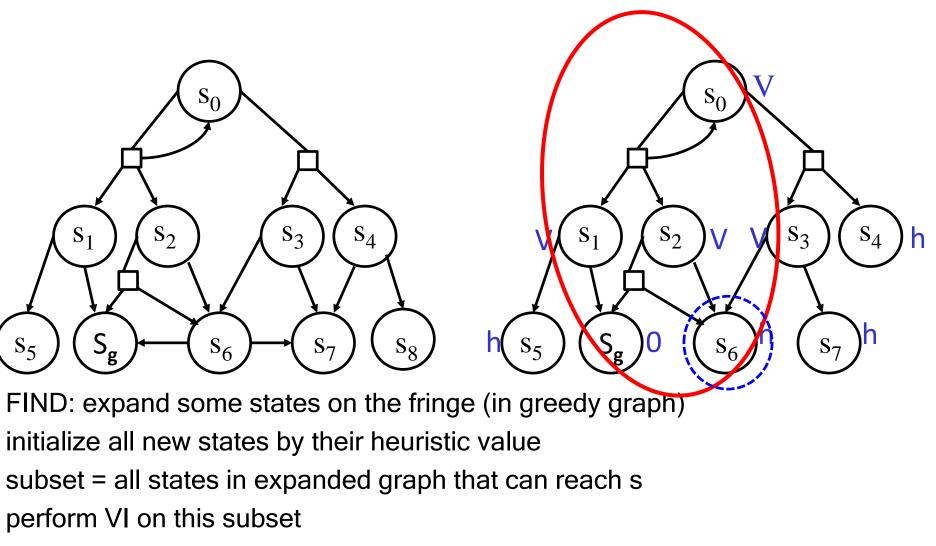


- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph

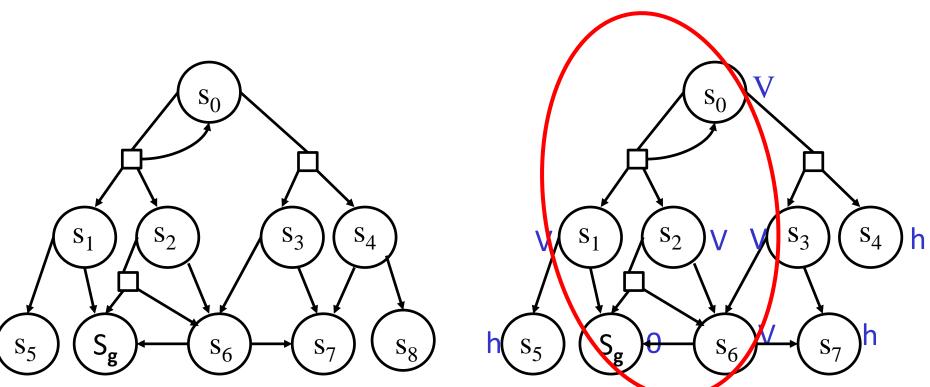


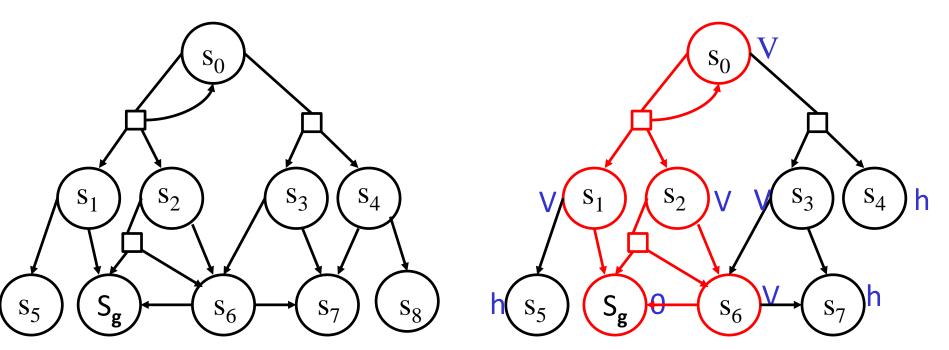
- FIND: expand some states on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- perform VI on this subset
- recompute the greedy graph

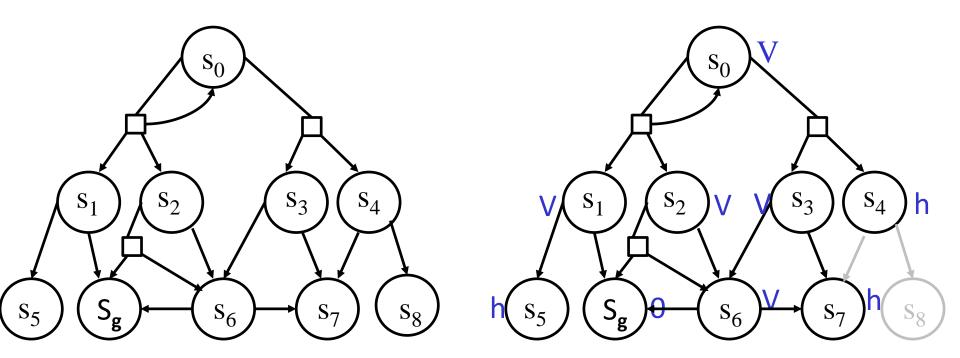




recompute the greedy graph







 s_4 was never expanded s_8 was never touched

add s_0 to the fringe and to greedy policy graph

one expansion

repeat

- FIND: expand best state s on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- REVISE: perform VI on this subset
- recompute the greedy graph

until greedy graph has no fringe

-lot of computation

Optimizations in LAO*

add s_0 to the fringe and to greedy policy graph

repeat

- FIND: expand best state s on the fringe (in greedy graph)
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- VI iterations until greedy graph changes (or low residuals)
- recompute the greedy graph

until greedy graph has no fringe

Optimizations in LAO*

add s_0 to the fringe and to greedy policy graph

repeat

- FIND: expand all states in greedy fringe
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- VI iterations until greedy graph changes (or low residuals)
- recompute the greedy graph

until greedy graph has no fringe

add s_0 to the fringe and to greedy policy graph

repeat

- FIND: expand all states in greedy fringe
- initialize all new states by their heuristic value
- subset = all states in expanded graph that can reach s
- only one backup per state in greedy graph
- recompute the greedy graph

until greedy graph has no fringe

in what order? (fringe → start) DFS postorder

output the greedy graph as the final policy **DFS** postorder

Extensions

- Heuristic Search + Dynamic Programming
 - AO*, LAO*, RTDP, ...
- Factored MDPs
 - add planning graph style heuristics
 - use goal regression to generalize better
- Hierarchical MDPs
 - hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
 - learning the probability and rewards
 - acting while learning connections to psychology
- Partially Observable Markov Decision Processes
 - noisy sensors; partially observable environment
 - popular in robotics