
Advanced MDP Algorithms

Mausam



VI  Asynchronous VI

 Is backing up all states in an iteration essential?

• No!

 States may be backed up 

• as many times

• in any order

 If no state gets starved

• convergence properties still hold!!

2



Residual wrt Value Function V 

(ResV)

 Residual at s with respect to V

• magnitude(¢V(s)) after one Bellman backup at s

 Residual wrt respect to V

• max residual

• ResV = maxs (Res
V(s))

ResV (s) =

¯̄
¯̄
¯V (s)¡min

a2A

X

s02S
T (s; a; s0)[C(s; a; s0) + V (s0)]

¯̄
¯̄
¯

ResV<²

(²-consistency)

3



(General) Asynchronous VI

4

REVISE



Prioritization of Bellman Backups

 Are all backups equally important?

 Can we avoid some backups?

 Can we schedule the backups more 

appropriately?

5



Useless Backups?

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969
6



Useless Backups?

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969
7



Asynch VI  Prioritized VI

8



Which state to prioritize?

s1

s'

s'

s' ¢V=0

¢V=0

¢V=0

.

.

.

.

.

.

.

.

s2

s'

s'

s' ¢V=0

¢V=2

¢V=0

.

.

.

.

.

.

.

.

s3

s'

s'

s' ¢V=0

¢V=5

¢V=0

.

.

.

.

.

.

.

.

s1 is zero priority

0.8 0.1

s2 is higher priority s3 is low priority

9



Prioritized Sweeping

priorityPS(s) = max

½
priorityPS(s);max

a2A
fT (s; a; s0)ResV (s0)g

¾

• Convergence [Li&Littman 08]

Prioritized Sweeping converges to optimal in the 
limit,

if all initial priorities are non-zero.

(does not need synchronous VI iterations)

10



Prioritized Sweeping

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

V(s0) V(s1) V(s2) V(s3) V(s4)

Initial V 3 3 2 2 1

3 3 2 2 2.8

Priority 0 0 1.8 1.8 0

Update 3 3 3.8 3.8 2.8

Priority 2 2 0 0 1.2

Update 3 4.8 3.8 3.8 2.8
11



Limitations of VI/Extensions

 Scalability

• Memory linear in size of state space

• Time at least polynomial or more

 Polynomial is good, no?

• state spaces are usually huge.

• if n state vars then 2n states!

 Curse of Dimensionality!

12



Heuristic Search

 Insight 1

• knowledge of a start state to save on computation

~ (all sources shortest path  single source shortest 

path)

 Insight 2

• additional knowledge in the form of heuristic 

function

~ (dfs/bfs  A*)

13



Model

 MDP with an additional start state s0

• denoted by MDPs0

 What is the solution to an MDPs0

 Policy (S!A)?

• are states that are not reachable from s0 relevant?

• states that are never visited (even though reachable)?

14



Partial Policy

 Define Partial policy

• ¼: S’ ! A, where S’µ S

 Define Partial policy closed w.r.t. a state s.

• is a partial policy ¼s

• defined for all states s’ reachable by ¼s starting 

from s

15



Partial policy closed wrt s0

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

16



Partial policy closed wrt s0

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?

17



Partial policy closed wrt s0

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?

18



Partial policy closed wrt s0

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Is this policy closed wrt s0?

19



Policy Graph of ¼s0

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1 20



Greedy Policy Graph

 Define greedy policy: ¼V = argmina QV(s,a)

 Define greedy partial policy rooted at s0
• Partial policy rooted at s0

• Greedy policy

• denoted by 

 Define greedy policy graph

• Policy graph of         : denoted by  

¼Vs0

¼Vs0 GV
s0

21



Heuristic Function

 h(s): S!R

• estimates V*(s) 

• gives an indication about “goodness” of a state

• usually used in initialization V0(s) = h(s)

• helps us avoid seemingly bad states

 Define admissible heuristic

• optimistic

• h(s) · V*(s)

22



A General Scheme for 

Heuristic Search in MDPs

 Two (over)simplified intuitions

• Focus on states in greedy policy wrt V rooted at s0

• Focus on states with residual > ²

 Find & Revise: 

• repeat

• find a state that satisfies the two properties above

• revise: perform a Bellman backup

• until no such state remains

23



regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)

acyclic graph

AO* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)

cyclic graph

LAO* [Hansen&Zil.’98]

All algorithms able to make effective use of reachability information!

A*  LAO*



add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand some states on the fringe (in greedy graph)

 initialize all new states by their heuristic value

 choose a subset of affected states

 REVISE: perform some Bellman backups on this subset

 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy

26

LAO* Family



add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)

 initialize all new states by their heuristic value

 subset = all states in expanded graph that can reach s

 REVISE: perform VI on this subset

 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy

27

LAO* 



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

add s0 in the fringe and in greedy graph

s0 V(s0) = h(s0)

28



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0 V(s0) = h(s0)

FIND: expand some states on the fringe (in greedy graph)

29



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

s0

s1 s2 s3 s4

V(s0) 

h h h h

30



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

s0

s1 s2 s3 s4

V(s0) 

h h h h

31



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0) 

32



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0) 

33



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

34



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

35



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

36



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

37



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

38



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

39



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

40



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

41



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

42



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

43



s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

s4 was never expanded
s8 was never touched

V V V h

V h

V

V

h 0 s8

44



add s0 to the fringe and to greedy policy graph

repeat

 FIND: expand best state s on the fringe (in greedy graph)

 initialize all new states by their heuristic value

 subset = all states in expanded graph that can reach s

 REVISE: perform VI on this subset

 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

one expansion

lot of computation

LAO*

45



add s0 to the fringe and to greedy policy graph

repeat

 FIND: expand best state s on the fringe (in greedy graph)

 initialize all new states by their heuristic value

 subset = all states in expanded graph that can reach s

 VI iterations until greedy graph changes (or low residuals)

 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

Optimizations in LAO*

46



add s0 to the fringe and to greedy policy graph

repeat

 FIND: expand all states in greedy fringe

 initialize all new states by their heuristic value

 subset = all states in expanded graph that can reach s

 VI iterations until greedy graph changes (or low residuals)

 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

Optimizations in LAO*

47



add s0 to the fringe and to greedy policy graph

repeat

 FIND: expand all states in greedy fringe

 initialize all new states by their heuristic value

 subset = all states in expanded graph that can reach s

 only one backup per state in greedy graph

 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

in what order?
(fringe  start)
DFS postorder

iLAO*

48



Extensions

 Heuristic Search + Dynamic Programming

• AO*, LAO*, RTDP, …

 Factored MDPs

• add planning graph style heuristics

• use goal regression to generalize better

 Hierarchical MDPs

• hierarchy of sub-tasks, actions to scale better

 Reinforcement Learning

• learning the probability and rewards

• acting while learning – connections to psychology

 Partially Observable Markov Decision Processes

• noisy sensors; partially observable environment

• popular in robotics
49


