
Markov Decision Processes
Chapter 17

Mausam

Planning Agent

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

2

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Instantaneous

Deterministic

3

Stochastic Planning: MDPs

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

4

MDP vs. Decision Theory

• Decision theory – episodic

• MDP -- sequential

5

Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/

non-absorbing

6

Objective of an MDP

• Find a policy : S→ A

• which optimizes

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.

7

Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics):

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …

8

Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, T, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, T, R, >

• Most often studied in machine learning, economics, operations
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, T, G, R, s0>

• Relatively recent model

most popular

9

Acyclic vs. Cyclic MDPs

P

RQ S T

G

P

R S T

G

a b
a b

c c c c c c c

0.6 0.4 0.50.5 0.6 0.4 0.50.5

C(a) = 5, C(b) = 10, C(c) =1

Expectimin works

• V(Q/R/S/T) = 1

• V(P) = 6 – action a

Expectimin doesn’t work

•infinite loop

• V(R/S/T) = 1

• Q(P,b) = 11

• Q(P,a) = ????

• suppose I decide to take a in P

• Q(P,a) = 5+ 0.4*1 + 0.6Q(P,a)

• = 13.5
10

Brute force Algorithm

 Go over all policies ¼

• How many? |A||S|

 Evaluate each policy

• V¼(s) Ã expected cost of reaching goal from s

 Choose the best

• We know that best exists (SSP optimality principle)

• V¼*(s) · V¼(s)

finite

how to evaluate?

11

Policy Evaluation

 Given a policy ¼: compute V¼

• V¼ : cost of reaching goal while following ¼

12

Deterministic MDPs

 Policy Graph for ¼

¼(s0) = a0; ¼(s1) = a1

 V¼(s1) = 1

 V¼(s0) = 6

s0 s1 sg
C=5 C=1

a0 a1

add costs on path to goal

13

Acyclic MDPs

 Policy Graph for ¼

 V¼(s1) = 1

 V¼(s2) = 4

 V¼(s0) = 0.6(5+1) + 0.4(2+4) = 6

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

C=4

a0 a1

a2

backward pass in
reverse topological
order

14

General MDPs can be cyclic!

 V¼(s1) = 1

 V¼(s2) = ?? (depends on V¼(s0))

 V¼(s0) = ?? (depends on V¼(s2))

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1

cannot do a
simple single pass

15

General SSPs can be cyclic!

 V¼(g) = 0

 V¼(s1) = 1+V¼(sg) = 1

 V¼(s2) = 0.7(4+V¼(sg)) + 0.3(3+V¼(s0))

 V¼(s0) = 0.6(5+V¼(s1)) + 0.4(2+V¼(s2))

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1

a simple system of
linear equations

16

Policy Evaluation (Approach 1)

 Solving the System of Linear Equations

 |S| variables.

 O(|S|3) running time

V ¼(s) = 0 if s 2 G
=

X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]

17

Iterative Policy Evaluation

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1
0

1

3.7+0.3V¼(s0)
3.7

5.464

5.67568

5.7010816

5.704129…

4.4+0.4V¼(s2)
0

5.88

6.5856

6.670272

6.68043..

18

Policy Evaluation (Approach 2)

iterative refinement

V ¼
n (s)Ã

X

s02S
T (s; ¼(s); s0)

£
C(s; ¼(s); s0) + V ¼

n¡1(s
0)
¤

(1)

V ¼(s) =
X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]

19

Iterative Policy Evaluation

iteration n

²-consistency

termination
condition

20

Policy Evaluation  Value Iteration

(Bellman Equations for MDP1)

V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Q*(s,a)

V*(s) = mina Q*(s,a)

• <S, A, T, C ,G, s0>

• Define V*(s) {optimal cost} as the minimum

expected cost to reach a goal from this state.

• V* should satisfy the following equation:

22

Bellman Equations for MDP2

• <S, A, T, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

23

Fixed Point Computation in VI

iterative refinement

V ¤(s) = min
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Vn(s)Ãmin
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + Vn¡1(s

0)]

non-linear
24

Example

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41

a3 C=2

25

V0= 0

V0= 2

Q1(s4,a40) = 5 + 0

Q1(s4,a41) = 2+ 0.6£ 0

+ 0.4£ 2

= 2.8

min

V1= 2.8

agreedy = a41

a41

a40

s4

sg

s3

C=5

C=2

sg
Pr=0.6

s4

s3
Pr=0.4

a40
C=5

a41

a3 C=2

Bellman Backup

Value Iteration [Bellman 57]

iteration n

²-consistency

termination
condition

No restriction on initial value function

27

Example

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41

a3 C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969
28

(all actions cost 1 unless otherwise stated)

Comments

• Decision-theoretic Algorithm

• Dynamic Programming

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|)

• number of iterations: poly(|S|, |A|, 1/², 1/(1-))

 Space Complexity: O(|S|)

31

Monotonicity

For all n>k

Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

Vk ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

32

Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value

40

Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmina2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence in fewer

number of iterations.

• all other properties follow!

costly: O(n3)

approximate

by value iteration

using fixed policy

Modified

Policy Iteration

41

Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic

programming algorithm.

42

Applications

 Stochastic Games

 Robotics: navigation, helicopter manuevers…

 Finance: options, investments

 Communication Networks

 Medicine: Radiation planning for cancer

 Controlling workflows

 Optimize bidding decisions in auctions

 Traffic flow optimization

 Aircraft queueing for landing; airline meal provisioning

 Optimizing software on mobiles

 Forest firefighting

 …

43

