
Classical Planning
Chapter 10

Mausam

(Based on slides of Dan Weld,
Marie desJardins)

Planning
• Given

– a logical description of the world states,

– a logical description of a set of possible actions,

– a logical description of the initial situation, and

– a logical description of the goal conditions,

• Find

– a sequence of actions (a plan of actions) that brings us
from the initial situation to a situation in which the goal
conditions hold.

© D. Weld, D. Fox 2

Example: BlocksWorld

© Daniel S. Weld 3

A

C

B C

B

A
?

Planning Input:
State Variables/Propositions

• (on-table a) (on-table b) (on-table c)

• (clear a) (clear b) (clear c)

• (arm-empty)

• (holding a) (holding b) (holding c)

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

• Typed constants:

• block a, b, c

• Typed predicates:

• (on-table ?b); (clear ?b)

• (arm-empty); (holding ?b)

• (on ?b1 ?b2)
© D. Weld, D. Fox 4

No. of state variables =16

No. of states = 216

No. of reachable states = ?

Planning Input: Actions
• pickup a b, pickup a c, …

• place a b, place a c, …

• pickup-table a, pickup-table b, …

• place-table a, place-table b, …

© D. Weld, D. Fox 5

• pickup ?b1 ?b2

• place ?b1 ?b2

• pickup-table ?b

• place-table ?b

Total: 6 + 6 + 3 + 3 = 18 “ground” actions

Total: 4 action schemata

Planning Input: Actions (contd)
• :action pickup ?b1 ?b2

:precondition

(on ?b1 ?b2)

(clear ?b1)

(arm-empty)

:effect

(holding ?b1)

(not (on ?b1 ?b2))

(clear ?b2)

(not (arm-empty))
© D. Weld, D. Fox 6

• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b)

(not (on-table ?b))

(not (arm-empty))

Planning Input: Initial State

• (on-table a) (on-table b)

• (arm-empty)

• (clear c) (clear b)

• (on c a)

• All other propositions false

• not mentioned false

© D. Weld, D. Fox 7

A

C

B

Planning Input: Goal

• (on-table c) AND (on b c) AND (on a b)

• Is this a state?

• In planning a goal is a set of states

© D. Weld, D. Fox 8

C

B

A

Planning Input Representation

• Description of world states

• Description of initial state of world

– Set of propositions

• Description of goal: i.e. set of worlds

– E.g., Logical conjunction

– Any world satisfying conjunction is a goal

• Description of available actions

© D. Weld, D. Fox 9

Classical Planning
• Simplifying assumptions

– Atomic time
– Agent is omniscient (no sensing necessary).
– Agent is sole cause of change
– Actions have deterministic effects

• STRIPS representation
– World = set of true propositions (conjunction)
– Actions:

• Precondition: (conjunction of positive literals, no functions)
• Effects (conjunction of literals, no functions)

– Goal = conjunction of positive literals (e.g., Rich ^ Famous)

© D. Weld, D. Fox 10

Planning vs. General Search

© D. Weld, D. Fox 11

Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by logical
formulae
 agent can explicitly reason about and communicate with
the world.

• Operators/Actions: Axioms or transformation on formulae in
a logical form
 agent can gain information about the effects of actions by
inspecting the operators.

• Goal conditions as logical formulae vs. goal test (black box)
 agent can reflect on its goals.

Planning as Search
• Forward Search in ? Space

– World State Space

– start from start state; look for a state with goal property
• dfs/bfs

• A*

• Backward Search in ? Space
– Subgoal Space

– start from goal conjunction; look for subgoal that holds in
initial state
• dfs/bfs/A*

• Local Search in ? Space

– Plan Space
© D. Weld, D. Fox 12

Forward World-Space Search

© Daniel S. Weld 13

A

C

B

C

B

A

Initial

State
Goal

StateA

C

B

A

C
B

Backward Subgoal-Space Search
• Regression planning

• Problem: Need to find predecessors of
state

• Problem: Many possible goal states
are equally acceptable.

• From which one does one search?

© D. Weld, D. Fox 15

DC
B
A

E

D

C
B
A

E

D
C
B
A

E

* * *

A
C

B

Initial State is

completely defined

D
E

Regression

• Regressing a goal, G, thru an action, A
yields the weakest precondition G’
– Such that: if G’ is true before A is executed

– G is guaranteed to be true afterwards

© D. Weld, D. Fox 16

A G
pre

cond

e
ffe

ct

G’

Represents a
set of world

states

Represents a
set of world

states

Regression Example

© D. Weld, D. Fox 17

• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b)

(not (on-table ?b))

(not (arm-empty))

A G

pre
cond

e
ffe

ct

G’

(and (holding C)
(on A B))

(and (clear C)
(on-table C)
(arm-empty)
(on A B))

Remove positive effects
Add preconditions for A

A
C

B
A

C B

Complexity of Planning
• Size of Search Space

– Forward: size of world state space

– Backward: size of subsets of partial state space!

• Size of World state space

– exponential in problem representation

• What to do?

– Informative heuristic that can be computed in
polynomial time!

© D. Weld, D. Fox 18

Heuristics for State-Space Search
• Count number of false goal propositions in current state

Admissible?

NO

• Subgoal independence assumption:
– Cost of solving conjunction is sum of cost of solving each subgoal

independently

– Optimistic: ignores negative interactions

– Pessimistic: ignores redundancy

– Admissible? No

© D. Weld, D. Fox 19

Heuristics for State Space Search
(contd)

• Delete all preconditions from actions, solve
easy relaxed problem, use length

Admissible?

YES

• Delete negative effects from actions, solve
easier relaxed problem, use length

Admissible?

YES (if Goal has only positive literals, true in
STRIPS)

CSE 573

20

Planning Graph: Basic idea
• Construct a planning graph: encodes

constraints on possible plans

• Use this planning graph to compute an
informative heuristic (Forward A*)

• Planning graph can be built for each problem
in polynomial time

© D. Weld, D. Fox 21

The Planning Graph

© D. Weld, D. Fox 22

…

…

…

level P0 level P1 level P2 level P3

level A1 level A2 level A3

Note: a few noops missing for clarity

Graph Expansion

© D. Weld, D. Fox 23

Proposition level 0

initial conditions

Action level i

no-op for each proposition at level i-1

action for each operator instance whose

preconditions exist at level i-1

Proposition level i

effects of each no-op and action at level i

…

…

…

i-1 i i+10

Mutual Exclusion

© D. Weld, D. Fox 24

Two actions are mutex if
• one clobbers the other’s effects or preconditions

• they have mutex preconditions

Two proposition are mutex if
•one is the negation of the other

•all ways of achieving them are mutex

p

p

p

p

p

p

Dinner Date

© D. Weld, D. Fox 25

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition

:effect (:and (noGarbage) (:not (cleanHands)))

(:operator dolly :precondition

:effect (:and (noGarbage) (:not (quiet)))

(:operator cook :precondition (cleanHands)

:effect (dinner))

(:operator wrap :precondition (quiet)

:effect (present))

Planning Graph

© D. Weld, D. Fox 26

noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Are there any exclusions?

© D. Weld, D. Fox 27

noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop

¬cleanH

¬quiet

Observation 1

© D. Weld, D. Fox 28

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 2

© D. Weld, D. Fox 29

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 3

© D. Weld, D. Fox 30

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…

Observation 4

© D. Weld, D. Fox 31

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

Observation 5

Planning Graph ‘levels off’.

• After some time k all levels are identical

• Because it’s a finite space, the set of literals
never decreases and mutexes don’t reappear.

© D. Weld, D. Fox 32

Properties of Planning Graph

• If goal is absent from last level

– Goal cannot be achieved!

• If there exists a path to goal

– Goal is present in the last level

• If goal is present in last level

– There may not exist any path still

© D. Weld, D. Fox 33

Heuristics based on Planning Graph

• Construct planning graph starting from s

• h(s) = level at which goal appears non-mutex

– Admissible?

– YES

• Relaxed Planning Graph Heuristic

– Remove negative preconditions build plan. graph

– Use heuristic as above

– Admissible? YES

– More informative? NO

– Speed: FASTER

© D. Weld, D. Fox 34

FF

• Topmost classical planner until 2009

• State space local search

– Guided by relaxed planning graph

– Full bfs to escape plateaus – enforced hill climbing

– A few other bells and whistles…

© Mausam 35

Application: Mars Rover

© Mausam
38

Application: Network Security
Analysis

© Mausam
39

Planning Summary
 Problem solving algorithms that operate on explicit

propositional representations of states and actions.

 Make use of specific heuristics.

 STRIPS: restrictive propositional language

 State-space search: forward (progression) / backward
(regression) search

 Local search FF

 Local search using compilation into SAT

 Partial order planners search space of plans from goal to
start, adding actions to achieve goals (did not cover)© D. Weld, D. Fox 40

