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In this lecture, we go back to the problem of looking at the probability of
the origin being connected to the surface of the box B(n) i.e. {0 ↔ ∂B(n)}.
Earlier, in Lecture 4, we gave an upper bound for this probability. Now we
characterize it more fully, giving both lower and uppper bounds.

In order to do this, we will introduce another tool from analysis first.

8.1 Preliminaries: The Subadditive Limit Theorem

A sequence (ai : i ≥ 1) is called subadditive if am+n ≤ am+an for all m, n ≥ 1.
A sequence (ai : i ≥ 1) is called superadditive if (−ai : i ≥ 1) is subadditive.

Some simple sequences that are subadditive are ai =
√

i and bi = i, the
last one being both subadditive and superadditive.

Theorem 8.1 If a sequence (ai : i ≥ 1) is subadditive, then the limit

λ = lim
r→∞

ar

r

exists and −∞ ≤ λ < ∞. Additionally,

λ = inf
{am

m
: m ≥ 1

}

.

The fact that the limit of the sequence λ is the inf{am

m
: m ≥ 1} is

important as it allows us to lower bound each element of the sequence: ,

∀m ≥ 1 : am ≥ mλ.
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8.2 Asymptotic tail behaviour of radius of an open

cluster

We will try to show that as n increases the probability of the event {0 ↔
∂B(n)} is not just upper bounded by an exponential decay but is also lower
bounded similarly. In this lecture we will prove the following theorem:

Theorem 8.2 For any p such that 0 < p < 1, there exist strictly positive

constants ρ and σ, independent of p, and a function ϕ(p), such that

ρn1−de−nϕ(p) ≤ Pp(0 ↔ ∂B(n) ≤ σnd−1e−nϕ(p).

Proof. Let us call β(n) = Pp(0 ↔ ∂B(n)). Our aim will be to show that the
sequence log β(n) is both subadditive and superadditive up to small additive
factors. Once we have done this, the subadditive limit theorem will give us
the proof.

Let us begin by proving subadditivity.

Lemma 8.3 For m, n ≥ 1,

β(m + n) ≤ |∂B(m)| · β(m) · β(n).

Proof for Lemma 8.3. The core of the proof of this lemma has been
discussed in Lecture 4 as part of the proof of Theorem 4.3. We repeat it here
for completeness and to demonstrate the relationship to the proof of the next
lemma.

Consider β(m + n), the probabilty of the existence of an open path from
origin to ∂B(m+n). If such a path exists, there must be an x ∈ ∂B(m) such
that the origin is connected to x through an open path and further there is
a path disjoint from the path used to connect 0 to x which connects x to
∂B(n, x) on its way to ∂B(m + n). Hence, using the BK inequality

β(m + n) ≤
∑

x∈∂B(m)

τp(0, x) · (Pp(x ↔ ∂B(n, x)))

Because of translational invariance the events {x ↔∂B(n, x)} and {0 ↔
∂B(n)} are equivalent. So

β(m + n) ≤
∑

x∈∂B(m)

τp(0, x) · β(n) (1)
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Also, because x ∈ ∂B(m), so the event {0 ↔ x} implies the event {0 ↔
∂B(m)}. And so we have

∀x ∈ ∂B(m) : τp(0, x) ≤ β(m).

Substituting this in (1), we get

β(m + n) ≤
∑

x∈∂B(m)

β(m) · β(n) ≤ |∂B(m)| · β(m) · β(n)

Corollary 8.4 For m, n ≥ 1, log β(m + n) ≤ log β(m) + log β(n) + g(m),
where g(r) = log(d23d+1) + (d − 1) · log(r)

Proof for Corollary 8.4. Consider a face of ∂B(m), say the one for which
x1 = m. Then the number of lattice points in it are

|{x ∈ Z : x1 = m, |xi| ≤ m, 2 ≤ i ≤ d}| = (2m + 1)d−1 (2)

since there are (d− 1) other coordinates, where each coordinate can take
any of 2m+1 different values. As all the 2d faces of ∂B(m) are identical, we
get

|∂B(m)| ≤ 2d · (2m + 1)d−1 ≤ d · 3d · md−1 ≤ d2 · 3d+1 · md−1 (3)

by using equation (2). The above equation is an inequality because the
corner points are being counted more than once, as they lie on more than
one face of ∂B(m) (d faces to be precise). Taking logs on both sides of the
inequality in Lemma 8.3 and applying (3), we get the result.

With this corollary we are within sight of subadditivity, although not
quite there because of the presence of g(m) on the right hand side. But
before we apply subadditivity, let us try to show another result which will
help us prove superadditivity,

Lemma 8.5 For m, n ≥ 1

β(m + n) ≥ β(m) · β(n)

2d|∂β(m)| .
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Proof for Lemma 8.5. Consider a particular face of ∂B(m), say the face
f with x1 = m. Let γ(m) = Pp(0 ↔ x : x ∈ f). Since for the origin to be
connected to ∂B(m), it must be connected to some face of ∂B(m), and since
the probability of the origin being connected to each face is exactly the same
as the probability of its being connected to f , we have

β(m) ≤
∑

all faces

γ(m) = 2d · γ(m). (4)

x1

B(m + n)

B(m)

x2

x

y

Figure 1: Illustration for Lemma 8.5

Now, consider some x ∈ ∂B(m). There must be a k such that xk = ±m

(depending on the face of ∂B(m) x lies on). Let us assume that xk = +m,
the case where it is −m will follow similarly.

Denote by Ux the event {0 ↔ x} and by Vx the event that there is an open
path in B(n, x) joining x to some vertex y ∈ ∂B(n, x) for which yk = m + n

i.e. x and y lie on the parallel faces of ∂B(m) and ∂B(m + n).
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From Figure 1 it is clear that Ux ∩ Vx ⇒ {0 ↔ ∂B(m + n)}. Hence

β(m + n) ≥ Pp(Ux ∩ Vx).

Since Ux and Vx are increasing events, we can use the FKG inequality:

β(m + n) ≥ Pp(Ux) · Pp(Vx). (5)

Let us consider the two terms on the right hand side of this inequality
one at a time. Firstly, since the event Vx is defined in terms of a particular
face of ∂B(n, x), by translational invariance we get that,

Pp(V (x)) = γ(n).

For the second term, we see that by the definition of β(m), we get that

β(m) = Pp





⋃

x∈∂B(m)

U(x)



 ≤
∑

x∈∂B(m)

Pp(U(x)).

By the Pigeon-hole Principle, we can say that there is an x∗ such that

Pp(U(x∗)) ≥ 1

|∂B(m)|β(m).

Since (5) holds for this choice of x∗ as well, we can now say that

β(m + n) ≥ Pp(U(x∗)) · Pp(V (x∗))

≥ 1

|∂B(m)|β(m)γ(n)

Using equation (4) to replace γ(n) we finally get

β(m + n) ≥ β(m)β(n)

2d|∂B(m)|

Corollary 8.6 For m, n ≥ 1, log β(m + n) ≥ log β(m) + log β(n)− g(m),
where g(r) = log(d23d+1) + (d − 1) · log(r)
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Proof for Corollary 8.6. Taking log on both sides of in the statement of
Lemma 8.5 and using equation (3), we get the result.

Corollary 8.4 and Corollary 8.6 show us that log β(n) is close to being
subadditive and superadditive but is not quite there. We need to massage
the inequalities we have got to get the required property.

Let us begin with Corollary 8.4. Adding g(n) to both sides we get

log β(m + n) + g(n) ≤ log β(m) + g(m) + log β(n) + g(n) (6)

Also, if m ≤ n,

g(m + n) − g(n) = (d − 1) log(1 +
m

n
) ≤ (d − 1) log 2 (7)

Adding equations (6) and (7) and adding (d − 1) log 2 on both sides, we
get

log β(m + n) + g(m + n) + (d − 1) log 2 ≤ (log β(m) + g(m) + (d − 1) log 2)

+ (log β(n) + g(n) + (d − 1) log 2.

Thus, even though the sequence β(n) is not subadditive, the sequence ak =
log β(k) + g(k) + (d− 1) log 2 is. And so by the Subadditive Limit Theorem
we get that the limit

λ = lim
k→∞

(

log β(k)

k
+

g(k)

k
+

(d − 1) log 2

k

)

(8)

exists. We can see that both g(k)
k

and (d−1) log 2
k

tend to 0 as k → ∞. There-

fore, it’s safe to say that ϕ(p) = − limk→∞

log β(k)
k

= −λ exists. From the
Subadditive Limit Theorem, we also have that

log β(n) + g(n) + (d − 1) log 2 ≥ nλ = −n · ϕ(p)

Hence

β(n) ≥ e−nφ(p) 1

d23d+1nd−1
· 1

2d−1

Setting ρ = 1
d23d+1 · 1

2d−1 , we get

β(n) ≥ ρ · n1−d · e−nφ(p) (9)
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We proceed in a similar fashion for the proof of the upper bound, using
the result from Corollary (8.4) instead of Corollary (8.6) and subtracting
g(n) from both sides instead of adding it. As a result, equation (6) becomes

log β(m + n) − g(n) ≥ log β(m) − g(m) + log β(n) − g(n) (10)

and equation (7), multiplied by −1, becomes

g(n) − g(m + n) = −(d − 1) log(1 +
m

n
) ≥ −(d − 1) log 2 (11)

if m ≤ n. Adding equations (10) and (11) and subtracting (d− 1) log 2 from
both sides, we get

log β(m + n) − g(m + n) − (d − 1) log 2 ≥ (log β(m) − g(m) − (d − 1) log 2)

+ (log β(n) − g(n) − (d − 1) log 2).

This time around, we can say that the sequence −bk = − log β(k) +
g(k) + (d − 1) log 2 is subadditive. Furthermore, from Theorem (8.1), we
again get that the limit

λ = lim
k→∞

(− log β(k)

k
+

g(k)

k
+

(d − 1) log 2

k

)

(12)

exists, where both g(k)
k

and (d−1) log 2
k

→ 0 as k → ∞.As a result, ϕ(p) =

− limk→∞

log β(k)
k

exists in this case as well.
And so, as before, we get

− log β(n) + g(n) + (d − 1) log 2 ≥ n · φ(p)

Which gives us

β(n) ≤ e−nφ(p)(d23d+1nd−1)(2d−1)

Setting σ = (d23d+1) · (2d−1), we get

β(n) ≤ σ · nd−1 · e−nφ(p)
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