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7.1 Introduction

We have seen how the radius of an open cluster decreases exponentially in the
subcritical phase (p < pc) as n increases. Apart from implying that the mean
cluster size is finite in the subcritical phase i.e. χ(p) <∞), this also implies
an exponential decay in the distribution of the cluster size. Since a radius of
n implies a cluster size of θ(nd) in Z

d we can say that the exponential decay
of the radius of the open cluster implies a result of the form

Pp(|C| > nd) ≤ e−f(p)n.

for some function f with f(p) > 0 for all 0 < p < pc.
However, we can improve this result significantly to the result stated in

Theorem 7.1. The proof of this will be the subject of this lecture.

7.2 Exponential decay of cluster size distribution

Theorem 7.1 If 0 < p < pc, there exists λ(p) > 0 such that

Pp(|C| ≥ n) ≤ e−nλ(p), ∀n ≥ 1.

Proof. We will consider a modified version of the moment generating func-
tion of |C|, Ep(|C| exp(t|C|)) for some t > 0.

First, we introduce some notation.

• I{0↔x}: Indicator variable for the event {0 ↔ x}.

• τp(x1, . . . , xn) = Pp{x1, . . . , xn are in the same open cluster}.
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Now, we can use the indicator variables I{0↔x} to say that

|C| =
∑

x∈Zd

I{0↔x}

Hence we get

|C|n =

(

∑

x∈Zd

I{0↔x}

)n

=
∑

x1,...,xn∈(Zd)n

I{0↔x1} . . . I{0↔xn}

Hence, Ep(|C|
n) =

∑

x1,...,xn

τp(0, x1, . . . , xn).

We will also need the following simple result from graph theory.

Lemma 7.2 Let G = (V,E) be a connected graph and ∅ 6= W ⊆ V . There

exists a vertex w ∈W such that, in the graph obtained from G by deleting w

and all its incident edges, all vertices in W −{w} are in the same connected

component.

Proof of Lemma 7.2. Let T be a spanning tree of G and let u be any vertex
of G. We can think of T as a tree rooted at u. Assume |W | ≥ 2, so that at
least one of the branches of T contains a vertex in W . Let u = x0, x1, . . . , xm
be the vertices on such a branch listed in increasing order of distance from
u in the tree T . Let w = max{xj : xj ∈ W}. Clearly, w has the required
property.

We know that, Ep(|C|
0) = 1 and Ep(|C|) = χ(p). So, the first non-trivial

case is Ep(|C|
2). This is the subject of our next lemma.

Lemma 7.3 For 0 < p < 1,

Ep(|C|
2) ≤ χ(p)3.

Proof of Lemma 7.3. Take G = C(x0) and W = {x0, x1, x2}. By
Lemma 7.2 there is a vertex of these three, say x2 whose removal leaves
x0 and x1 in the same open cluster. This is equivalent to saying that there
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Figure 1: Three edge-disjoint spokes of a wheel.

exists an open path π1 joining x0 and x1 which does not use the third vertex
x2. As C(x0) is connected, there exists an open path π2 from x2 to some
vertex u in π1 using no other vertex in π1. See Figure 1 for an illustration
of this argument. What we have shown is that if three vertices lie in the
same open cluster there is a “three spokes in a wheel” structure within that
cluster. This will help us use the BK inequality. Note that, though we have
assumed that x0, x1, x2 are distinct, this is not required. If x0 = x1 = x2, we
can take u = x0 and if x0 = x1 6= x2, we can take u = x0.

From the above discussion it follows that,

{x0 ↔ x1 ↔ x2} ⊆ {∃u ∈ Z
d : {u↔ x0} ◦ {u↔ x1} ◦ {u↔ x2}}

where {x0 ↔ x1 ↔ x2} is the event that x0, x1 and x2 are in the same
open cluster.

Hence,

τp(x0, x1, x2) ≤
∑

u∈Zd

Pp({u↔ x0} ◦ {u↔ x1} ◦ {u↔ x2})

≤
∑

u∈Zd

τp(u, x0)τp(u, x1)τp(u, x2) (BK inequality)
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Taking x0 = 0 we get,

Ep(|C|
2) ≤

∑

u,x1,x2

τp(u, 0)τp(u, x1)τp(u, x2)

=
∑

u∈Zd

τp(u, 0)
∑

x1∈Zd

τp(u, x1)
∑

x2∈Zd

τp(u, x2)

=

(

∑

x∈Zd

τp(x, 0)

)3

(Translation invariance)

= χ(p)3.

This approach worked well to calculate |C|2. Now let us try and generalize
it to calculate |C|n for n ≥ 3.

Lemma 7.4 For 0 < p < 1,

Ep(|C|
n) ≤

(2n− 2)!

2n−1(n− 1)!
χ(p)2n−1.

Proof. To prove this lemma, we have to generalize the idea of “a wheel with
three spokes.” With this in mind we give the following definitions:

Definition 7.5 A tree is called a skeleton if each of its vertex has degree 1
or 3. The degree 1 vertices are called exterior and the degree 3 vertices are

called interior.
A labelled skeleton is one in which each of the k exterior vertices has a

unique label between 0 to k − 1.
Two labelled skeletons S1 and S2 are called isomorphic, if there is a one-

one mapping between V (S1) and V (S2) under which both the adjacency rela-

tion and the labellings of the exterior vertices are preserved.

Figure 2 shows skeletons with 1, 2 and 3 internal vertices. Note that the
smallest possible skeleton (the one with 1 internal vertex) corresponds to a
wheel with three spokes and is realized in Z

d by the structure in Figure 1.
Before we show how the argument of the previous lemma can be generalized,
let us discuss a simple property of skeletons.

Fact 7.6 A skeleton with k exterior vertices has k − 2 interior vertices and

2k − 3 edges.
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Figure 2: Some simple skeletons. Note that there is only skeleton each with
1, 2 and 3 internal vertices. However, there are more than one skeletons with
k internal vertices for k ≥ 4.

Proof of Fact 7.6. Let x be the number of interior vertices and y be the
number of edges. Since, each exterior vertex has degree 1 and each interior
vertex has degree 3 and the fact that its a tree, we must have

k + 3x = 2(k + x− 1) = 2y

Solving this we get, x = k − 2 and y = 2k − 3.
Now, we move on to the general argument. In the previous lemma there

was a structure with three disjoint paths realizing the three edges of the
skeleton with one internal vertex (the three spokes of the wheel) whenever
three vertices were in the same open cluster, we will show that if there are
more than three vertices in the same open cluster there will be some larger
skeleton whose edges can be realized in the lattice through edge-disjoint
paths. We state this argument as a lemma.

Lemma 7.7 Suppose that x0, x1, . . . , xk are vertices of L
d belonging to the

same open cluster. We claim that there exists a labelled skeleton S with k+1
exterior vertices together with a mapping ψ from V (S) to Z

d, such that the

following is true:

1. The exterior vertex of S with label i is mapped to xi by ψ, for 0 ≤ i ≤ k.

2. There exist 2k − 1 edge-disjoint open paths joining the 2k − 1 vertex

pairs {(ψ(u), ψ(v)) : (u, v) ∈ S}.

Proof of Lemma 7.7. We prove this by induction on k. From the proof of
Lemma 7.3, it follows that this is true for k = 2. Suppose that it is true for
k = n and x0, x1, . . . , xn belong to the same open cluster of L

d. By Lemma
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7.2, there exists j such that every vertex in {xi : 0 ≤ i ≤ n + 1} − {xj}
belongs to the same connected component of the graph obtained from this
cluster by deleting xj and all its incident edges. We can assume without loss
of generality that j = n+1. We also assume that all the vertices x0, x1, . . . , xn
are distinct from xn+1. Even without this assumption we can prove this, but
we will not go into the details.

By the induction hypothesis, there exists a labelled skeleton S with n+1
exterior vertices together with a mapping ψ from V (S) to Z

d satisfying (1)
and (2) with k = n, such that xn+1 does not lie in any of the edge-disjoint
open paths in (2). But, xn+1 is in the same open cluster as x0, x1, . . . , xn.
Hence, there exists an open path π joining xn+1 to some vertex in these
2n − 1 edge-disjoint paths, using exactly one vertex (say z) in these paths.
We modify the skeleton S by adding an additional interior vertex v at the
appropriate place and by defining ψ(v) = z. Therefore, the claim is true for
k = n+ 1.

It follows that for k ≥ 2,

τp(x0, . . . , xk) ≤
∑

S

∑

ψ

Pp(∃ edge-disjoint paths joining ψ(u) to ψ(v), ∀(u, v) ∈ E(S)).

We use the BK inequality to get,

τp(x0, . . . , xk) ≤
∑

S

∑

ψ

∏

(u,v)∈S

τp(ψ(u), ψ(v)).

Where the first sum is over all possible labelled skeletons with k external
vertices and the second sum is over all possible mappings of a given skeleton.

Hence,

Ep(|C|
n) =

∑

x1,...,xn

τp(x0, . . . , xn)

≤
∑

x1,...,xn

∑

S

∑

ψ

∏

(u,v)∈S

τp(ψ(u), ψ(v))

≤

[

∑

x

τp(0, x)

]n
∑

S

[

∑

x

τp(0, x)

]n−1

= Nn+1χ(p)2n−1,
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where Nn+1 is the number of labelled skeletons with n+1 exterior vertices.

To compute Nn+1, we recall that (Fact 7.6) a labelled skeleton with n exterior
vertices has 2n−3 edges. We can attach a new exterior vertex to any of these
2n−3 edges and add an interior vertex to make it a skeleton on n+1 exterior
vertices. None of the resulting skeletons are isomorphic to each other. So,
we have the following recurrence relation:

Nn+1 = (2n− 3)Nn

N3 = 1

It follows that,

Nn+1 = (2n− 3)(2n− 5) . . . 3 · 1

=
(2n− 2)!

2n−1(n− 1)!
.

Ep(|C|
n) ≤

(2n− 2)!

2n−1(n− 1)!
χ(p)2n−1.

Now, using Lemma 7.4 we have,

Ep(|C|e
t|C|) =

∞
∑

n=0

1

n!
tnEp(|C|

n+1)

≤ χ(p)

[

1 +
∞
∑

n=1

1

n!
tnNn+2χ(p)2n

]

= χ(p)
(

1 − 2tχ(p)2
)−1/2

,

for 0 ≤ t < 1
2χ(p)2

. Using Markov’s inequality we get,

Pp(|C| ≥ n) = Pp(|C|e
t|C| ≥ netn)

≤
1

netn
Ep(|C|e

t|C|)

≤
χ(p)

netn

(

1 − 2tχ(p)2
)−1/2

,

for 0 ≤ t < 1
2χ(p)2

. We choose

t =
1

2χ(p)2
−

1

2n
.
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Clearly, t > 0 if and only if n > χ(p)2. For this value of t we get,

Pp(|C| ≥ n) ≤
( e

n

)1/2

exp

(

−
n

2χ(p)2

)

.

Setting λ(p) = 1
2χ(p)2

, we arrive at Theorem 7.1.
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