Lecture 6: The Subcritical phase: Exponential decay of the radius of the open cluster

17th, 24th, 27th September and 1st October 2007

In this lecture we pose the question: when is $\chi(p)$, the expected size of the open cluster containing the origin, finite? Definitely, it is not finite when $p>p_{c}$. But is it always finite when $p<p_{c}$? The answer is yes, $\chi(p)$ also undergoes a critical phenomenon at p_{c}, it is finite below and infinte above. But to give this yes answer requires some work. In this lecture we will prove a stronger result. We will show that the tail probability of the radius of an open cluster decays exponentially. Once we have demonstrated this, the the finiteness of $\chi(p)$ follows.

6.1 Exponential decay of the radius

This section will be devoted to proving the following theorem
Theorem 6.1 If $p<p_{c}$, there exists a function $\Psi(p)>0$, such that

$$
P_{p}(0 \leftrightarrow \partial S(n))<e^{-n \Psi(p)} .
$$

Proof. Let $g_{p}(n)$ denote $\mathrm{P}_{p}\left(A_{n}\right)$. By the Integral form of the Russo's formula(equation(2) of lecture 5), if A_{n} is an increasing event and $N\left(A_{n}\right)$ denotes the number of pivotal edges for A_{n} :

$$
g_{\alpha}(n)=g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} \frac{E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)}{p} d p\right) .
$$

Let $0 \leq \alpha<\beta \leq 1$. Since $p<1$,

$$
\begin{aligned}
\frac{E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)}{p} & \geq E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \\
g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} \frac{E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)}{p} d p\right) & \leq g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) d p\right)
\end{aligned}
$$

Since $g_{\alpha}(n)=g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} \frac{E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)}{p} d p\right)$, it follows that

$$
\begin{equation*}
g_{\alpha}(n) \leq g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) d p\right) \tag{1}
\end{equation*}
$$

To Prove the Theorem 6.1, the above inequality will play an important role. For that we need to find $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ so that we can use the above inequality conclusively, where A_{n} is the event that an open path exists from 0 to $\partial S(n)$ which is obviously an increasing event.

Suppose A_{n} occurs. Note that the pivotal edges for A_{n} will be uniquely ordered $e_{1}, e_{2} \ldots . . e_{N}$. This order is the sequence in which these pivotal egdes will be visited in the open path from 0 to $\partial S(n)$ which will be unique.

Also note that in the open path from origin to $\partial S(n)$, either two successive pivotal edges e_{i}, e_{i+1} will be consecutive or the open component between them is biconnected i.e. it has no cut edge. This is because between e_{i} and e_{i+1} there are no pivotal edges and if the open component between e_{i} and e_{i+1} has a cut edge, it will definitely be a pivotal edge. To make the above discussion more clear, let us put it more formally. (Also see Figure 1.)

Let $e_{i}=\left\langle x_{i}, y_{i}\right\rangle$, where x_{i} and y_{i} are the end points of e_{i} such that in the open path from origin to $\partial S(n), x_{i}$ is visited before y_{i}. For every $i \in\{1,2, \ldots N\}$ either $y_{i}=x_{i+1}$ or the open component between e_{i} and e_{i+1} has no cut edge. The latter is equivalent to the following two statements:

1. The open component between y_{i} and x_{i+1} is biconnected.
2. There are 2 edge disjoint paths between y_{i} and x_{i+1}.

For each $i \in\{1,2, \ldots N\}$, let ρ_{i} denote $\delta\left(y_{i-1}, x_{i}\right)$, where $y_{0}=0$ and $\delta(u, v)$ is the smallest number of edges required to traverse between u and v.

Let M denote $\max \left\{k: A_{k}\right.$ occurs $\}$ i.e. M is the radius of the largest ball whose boundary contains a vertex having an open path to origin.Note that

$$
\begin{equation*}
\mathrm{P}_{p}(M \geq m)=g_{p}(m) \tag{2}
\end{equation*}
$$

because the event $M \geq m$ is equivalent to the event that the largest ball, whose boundary contains a vertex having an open path to origin, has radius atleast m which in turn is equivalent to saying that there is atleast an open path from origin to the boundary of the ball of radius m.

Figure 1: Sequence of critical edges and biconnected components for the event A_{n}

Lemma 6.2 Given a non-negative integer $r \leq n-1$. Then for any $p \in(0,1)$:

$$
P_{p}\left(\rho_{1} \leq r \mid A_{n}\right) \geq P_{p}(M \leq r)
$$

Before proceeding to the proof of this lemma, it is important to understand that the events $\left(\rho_{1} \leq r \mid A_{n}\right)$ and $(M \leq r)$ are related only mathematically and with respect to their probability measures. The relationship between their probabilities doesn't imply that there exists some sort of subset/superset relationship between them. After this disclaimer, let's prove the lemma.
Proof of Lemma 6.2: Consider the event: $\left(\rho_{1}>r\right) \cap A_{n}$. If $\rho_{1}>r$ i.e. $\rho_{1} \geq r+1$, then two edge disjoint open paths exist between origin and $\partial S(r+1)$.

Since $r+1 \leq n,\left(\rho_{1}>r\right) \cap A_{n}$ implies there are edge disjoint open paths from origin to $\partial S(r+1)$ and $\partial S(n)$. This is because of the existence of two edge disjoint open paths from origin to $\partial S(r+1)$. Even if one of these paths goes to $\partial S(n)$, there is still an open path from origin to $\partial S(r+1)$ which is
edge disjoint from the former. So we have,

$$
\begin{equation*}
\left\{\rho_{1}>r\right\} \cap A_{n} \quad \rightarrow \quad A_{r+1} \circ A_{n} . \tag{3}
\end{equation*}
$$

This is same as saying that

$$
\left\{\rho_{1}>r\right\} \cap A_{n} \subseteq A_{r+1} \circ A_{n}
$$

It follows that

$$
\mathrm{P}_{p}\left(\left\{\rho_{1}>r\right\} \cap A_{n}\right) \leq \mathrm{P}_{p}\left(A_{r+1} \circ A_{n}\right) .
$$

By using BK inequality, we get

$$
\mathrm{P}_{p}\left(\left\{\rho_{1}>r\right\} \cap A_{n}\right) \leq \mathrm{P}_{p}\left(A_{r+1}\right) \cdot \mathrm{P}_{p}\left(A_{n}\right)
$$

Rearranging terms, we obtain

$$
\frac{\mathrm{P}_{p}\left(\left\{\rho_{1}>r\right\} \cap A_{n}\right)}{\mathrm{P}_{p}\left(A_{n}\right)} \leq \mathrm{P}_{p}\left(A_{r+1}\right)
$$

This is same as saying that

$$
\mathrm{P}_{p}\left(\left\{\rho_{1}>r\right\} \mid A_{n}\right) \leq \mathrm{P}_{p}\left(A_{r+1}\right) .
$$

When complements of the events on both sides are taken, the inequality reverses signs and since $\mathrm{P}_{p}\left(A_{r+1}\right)$ is same as $g_{p}(r+1)$ we get

$$
\mathrm{P}_{p}\left(\left\{\rho_{1} \leq r\right\} \mid A_{n}\right) \geq 1-g_{p}(r+1)
$$

Applying equation (2) we obtain

$$
\mathrm{P}_{p}\left(\left\{\rho_{1} \leq r\right\} \mid A_{n}\right) \geq 1-\mathrm{P}_{p}(M \geq(r+1)) .
$$

It follows that

$$
\mathrm{P}_{p}\left(\left\{\rho_{1} \leq r\right\} \mid A_{n}\right) \geq \mathrm{P}_{p}(M \leq r) .
$$

Note that the converse of equation (3) is not true i.e. $A_{r+1} \circ A_{n}$ doesn't necessarily imply $\left\{\rho_{1}>r\right\} \cap A_{n}$. The counterexample can be seen in Figure 2 which illustrates an outcome of a percolation experiment.

In Figure 2, let the only open edges be the ones that have been highlighted. The event $A_{r+1} \circ A_{n}$ is occuring because there are two edge disjoint open paths from origin to $\partial S(n)$ and $\partial S(r+1)$. But $\rho_{1}=0$ and therefore $\rho_{1} \leq r$. So it is clear that $A_{r+1} \circ A_{n}$ doesn't imply $\left\{\rho_{1}>r\right\} \cap A_{n}$.

Figure 2: Counter-example to converse of equation (3)

Lemma 6.3 Given $k>0$ and non negative integers $r_{1}, r_{2} \ldots r_{k}$ such that $\sum_{i=1}^{k} r_{k} \leq n-k$. Then, for $0<p<1$,

$$
P_{p}\left(\rho_{k} \leq r_{k}, \rho_{i}=r_{i}, 1 \leq i<k \mid A_{n}\right) \geq P_{p}\left(M \leq r_{k}\right) \cdot P_{p}\left(\rho_{i}=r_{i}, 1 \leq i<k \mid A_{n}\right)
$$

Proof of Lemma 6.3: Note that Lemma 6.2 was a special case $(k=1)$ of this Lemma. Here we outline the proof for a general k. Let D_{e} be the set of all vertices reachable from origin along open paths without using e.

Definition 6.4 Define event B_{e} for an edge $e=\langle u, v\rangle$ as follows :

1. Exactly one of u, v is in D_{e}, say u
2. e is open
3. D_{e} contains no vertex of ∂S_{n}
4. The pivotal edges for $\{0 \leftrightarrow v\}$ are in order $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle \ldots\left\langle x_{k-1}, y_{k-1}\right\rangle$, where $x_{k-1}=u$ and $y_{k-1}=v$
5. $\delta\left(y_{i-1}, x_{i}\right)=r_{i}$, where $1 \leq i<k$ and $y_{0}=0$.

Let $B=\cup B_{e}$ Notice that for a particular outcome w, B_{e} can occur for only one edge e in the lattice. This follows from the uniqueness of ordering of pivotal edges, as explained in the beginning of the section.

Suppose outcome $w \in A_{n} \cap B$. Let e be the unique edge such that $w \in B_{e}$. Construct graph $G=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=D_{e} \cup\{v\}$ and $E^{\prime}=\{(x, y) \mid x \in$ $\left.V^{\prime}, y \in V^{\prime}\right\}$. We call v as $y(G)$ and also mark it in the graph. Now, using the concept of marginal distribution,

$$
\begin{align*}
\mathrm{P}_{p}\left(A_{n} \cap B\right) & =\sum_{\varrho} \mathrm{P}_{p}\left(\left(A_{n} \cap B \cap(G=\varrho)\right)\right. \tag{4}\\
& =\sum_{\varrho} \mathrm{P}_{p}(B, G=\varrho) \cdot \mathrm{P}_{p}\left(A_{n} \mid B, G=\varrho\right) \tag{5}
\end{align*}
$$

Note that the for a graph $G=\varrho$, the edge e can be different, depending on the percolation outcome w. Therefore, to differentiate the two instances of G, the vertex $y(G)$ has been marked, thus giving independent identities to the two graphs, depending upon the unique edge responsible. Now consider $P\left(A_{n} \mid B, G=\varrho\right)$.

Claim 6.5 The event $\left\{A_{n} \mid B, G=\varrho\right\}$ is the same as the event $\{y(\varrho) \leftrightarrow$ ∂S_{n} off $\left.\varrho.\right\}$

Let A_{n} occur given that B occurs and $G=\varrho$. Since, the edge e is a pivotal edge and the event A_{n} occurs, $y(\varrho)$ is connected to ∂S_{n} without crossing ϱ. The latter assertion is true, because if a path from $y(\varrho)$ to ∂S_{n} passes through edge $\langle a, b\rangle$, where $b \in \varrho, A_{n}$ can occur without passing through edge e. This can be done by using the open path $(0, b),\left(b, \partial S_{n}\right)$. Thus e would no longer remain the pivotal edge. Hence $y(\varrho)$ is connected to ∂S_{n} without crossing ϱ.

In Figure 3, we see an illustration of the argument: if $y(\varrho)$ is connected to $\partial S(n)$ through a path which touches ϱ (the connection is shown with a dotted line line), then e cannot be a pivotal edge, which is a contradiction. Hence Claim 6.5 is proved.

From Claim 6.5 and (5), we get

$$
\begin{equation*}
\mathrm{P}_{p}\left(A_{n} \cap B\right)=\sum_{\varrho} \mathrm{P}_{p}(B, G=\varrho) \cdot \mathrm{P}_{p}\left(y(\varrho) \leftrightarrow \partial S_{n} \text { off } \varrho\right) \tag{6}
\end{equation*}
$$

Figure 3: $y(\varrho)$ not connected to ∂S_{n} off ϱ contradicts the pivotality of e.

Now, similar to (5), the following equation holds :
$\mathrm{P}_{p}\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \cap B\right)=\sum_{\varrho} \mathrm{P}_{p}(B, G=\varrho) \cdot \mathrm{P}_{p}\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \mid B, G=\varrho\right)$
Now let event $\left\{\rho_{k}>r_{k}\right\} \cap A_{n}$ occur. $\rho_{k}=\delta\left(y(\varrho), x_{k}\right)$, where x_{k} could lie on ∂S_{n}, or be the endpoint of the $k t h$ pivotal edge. Also, let $S(a, b)$ denote the set of points at distance $\leq b$ from point a. Since, $\rho_{k}>r_{k}$, the event $\left\{y(\varrho) \leftrightarrow \partial S\left(y(\varrho), r_{k}+1\right)\right\}$ occurs. Also, since A_{n} occurs, the event $\left\{y \leftrightarrow \partial S_{n}\right\}$ occurs.

The pivotality of e ensures that both the above events use edges outside ϱ. Moreover, since there are no pivotal edges between e and $\left\langle x_{k}, y_{k}\right\rangle$, this ensures that there are two edge disjoint paths from $y(\varrho)$ to x_{k}. One of them can be used for the event $\left\{y(\varrho) \leftrightarrow \partial S\left(y(\varrho), r_{k}+1\right)\right\}$ and the other for event A_{n}.

In Figure 4 we see an illustration of this argument. Between the second vertex of the $k-1$ th pivotal edge i.e. $y_{k-1}=y(\varrho)$ and the first vertex of the k th pivotal edge, lie two edge disjoint paths. One can be seen as part of a path that extends to $\partial S(n)$ and the other can be seen to be a path from $y(\varrho)$ to $\partial S\left(y(\varrho), r_{k}+1\right)$.

From the above analysis,
$\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \mid B, G=\varrho\right) \subseteq\left(y \leftrightarrow \partial S\left(y(\varrho), r_{k}+1\right)\right.$ off $\left.\varrho\right) \circ\left(y(\varrho) \leftrightarrow \partial S_{n}\right.$ off $\left.\varrho\right)$

Figure 4: Disjoint Paths to ∂S_{n} and $\partial S\left(y(\varrho), r_{k}+1\right)$

Now applying BK Inequality to the RHS of the above equation, we get
$\mathrm{P}_{p}\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \mid B, G=\varrho\right) \leq \mathrm{P}_{p}\left(y \leftrightarrow \partial S\left(y(\varrho), r_{k}+1\right)\right.$ off $\left.\varrho\right) \cdot \mathrm{P}_{p}\left(y(\varrho) \leftrightarrow \partial S_{n}\right.$ off $\left.\varrho\right)$
Using Equations (7) and (8) ,we obtain

$$
\begin{align*}
& \mathrm{P}_{p}\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \cap B\right) \leq \sum_{\varrho} \mathrm{P}_{p}(B, G=\varrho) \cdot \mathrm{P}_{p}\left(y \leftrightarrow \partial S\left(r_{k}+1, y(\varrho)\right) \text { off } \varrho\right) \\
& \cdot \mathrm{P}_{p}\left(y(\varrho) \leftrightarrow \partial S_{n} \text { off } \varrho\right) \tag{8}
\end{align*}
$$

Using translation invariance, the $2 n d$ term of the RHS above can be brought out common and can be replaced by $\mathrm{P}_{p}\left(A_{r_{k}+1}\right)=g_{p}\left(r_{k}+1\right)$. This is because,

$$
\begin{equation*}
\mathrm{P}_{p}\left(y \leftrightarrow \partial S\left(r_{k}+1, y(\varrho)\right) \text { off } \varrho\right) \leq \mathrm{P}_{p}\left(y \leftrightarrow \partial S\left(r_{k}+1, y(\varrho)\right)\right) \tag{9}
\end{equation*}
$$

and then we can apply translation invariance. Hence, using this finding and (6), we get

$$
\mathrm{P}_{p}\left(\left\{\rho_{k}>r_{k}\right\} \cap A_{n} \cap B\right) \leq g_{p}\left(r_{k}+1\right) \mathrm{P}_{p}\left(A_{n} \cap B\right)
$$

By some manipulation of the above equation, we get:

$$
\begin{equation*}
\mathrm{P}_{p}\left(\left\{\rho_{k} \leq r_{k}\right\} \mid B \cap A_{n}\right) \geq 1-g_{p}\left(r_{k}+1\right) \tag{10}
\end{equation*}
$$

Multiplying both sides of the equation with $P\left(B \mid A_{n}\right)$, and using the Definition of B and in particular B_{e}, we get
$\mathrm{P}_{p}\left(\rho_{k} \leq r_{k}, \rho_{i}=r_{i}\right.$ for $\left.1 \leq i<k \mid A_{n}\right) \geq \mathrm{P}_{p}\left(M \leq r_{k}\right) \cdot \mathrm{P}_{p}\left(\rho_{i}=r_{i}\right.$ for $\left.1 \leq i<k \mid A_{n}\right)$

Hence, the Lemma 6.3 is now proved.
In our goal to prove Theorem 6.1, we would actually use a variant of the above Theorem i.e

Lemma 6.6 Given $k>0$ and non negative integers i and r_{k} such that $i+$ $r_{k} \leq n-k$. Then, for $0<p<1$, $P_{p}\left(\rho_{k} \leq r_{k}, \rho_{1}+\rho_{2}+\ldots+\rho_{k-1}=i \mid A_{n}\right) \geq P_{p}\left(M \leq r_{k}\right) \cdot P_{p}\left(\rho_{1}+\rho_{2}+\ldots+\rho_{k-1}=i \mid A_{n}\right)$.
Proof of Lemma 6.6: The proof for the Lemma above remains exactly the same as for Lemma 6.3. The only change is in Definition of B_{e}, in which we replace condition 5 with the following condition 5 '.

$$
\rho_{1}+\rho_{2} \ldots \rho_{k-1}=i
$$

The Corollary below would be directly used in the proof of Theorem 6.1, and would use the Lemma stated above.

Corollary 6.7

$$
P_{p}\left(\rho_{1}+\rho_{2}+\rho_{3} \ldots \rho_{k} \leq n-k \mid A_{n}\right) \geq P_{p}\left(M_{1}+M_{2} \ldots M_{k} \leq n-k\right)
$$

where $M_{1}, M_{2} \ldots$ is a sequence of independent random variables distributed as M.

Proof of Corollary 6.7: Using the concept of marginal distribution, $\mathrm{P}_{p}\left(\rho_{1}+\rho_{2}+\ldots \rho_{k} \leq n-k \mid A_{n}\right)=\sum_{i=0}^{n-k} \mathrm{P}_{p}\left(\rho_{1}+\rho_{2} \ldots \rho_{k-1}=i, \rho_{k} \leq n-k-i \mid A_{n}\right)$
Using the Claim made in Lemma 6.6, we get

$$
\begin{align*}
\mathrm{P}_{p}\left(\rho_{1}+\rho_{2}+\ldots \rho_{k} \leq n-k \mid A_{n}\right) & \geq \sum_{i=0}^{n-k} P(M \leq n-k-i) \mathrm{P}_{p}\left(\rho_{1}+\rho_{2}+\ldots \rho_{k-1}=i \mid A_{n}\right) \\
& \geq \mathrm{P}_{p}\left(\rho_{1}+\rho_{2} \ldots \rho_{k-1}+M_{k} \leq n-k \mid A_{n}\right) \tag{11}
\end{align*}
$$

We iterate similar to above, replacing ρ_{i} in each step by M_{i}, and get the RHS of the Corollary.

Having proved the above Corollary, we are now in a position to move forward with our aim to prove Theorem 6.1. We prove another Lemma below in this direction.

Lemma 6.8 For $0<p<1$,

$$
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\left(\sum_{i=0}^{n} g_{p}(i)\right)}-1
$$

Proof of Lemma 6.8: Note that if $\rho_{1}+\rho_{2} \ldots \rho_{k} \leq n-k$, then $\delta\left(0, y_{k}\right) \leq$ $n-k+k \leq n$. This implies that even by using the first k pivotal edges, we can atmost just reach ∂S_{n}. Thus, to reach ∂S_{n}, the number of pivotal edges required $\geq k$. Hence, $N\left(A_{n}\right) \geq k$. Hence,

$$
\begin{align*}
\mathrm{P}_{p}\left(N\left(A_{n}\right) \geq k \mid A_{n}\right) & \geq \mathrm{P}_{p}\left(\rho_{1}+\rho_{2}+\rho_{3} \ldots \rho_{k} \leq n-k \mid A_{n}\right) \\
& \geq P\left(M_{1}+M_{2} \ldots M_{k} \leq n-k\right) \tag{12}
\end{align*}
$$

The second step above uses the Corollary 6.7, which was proved prior to this Lemma. Now, using the definition of Expectation value,

$$
\begin{align*}
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) & =\sum_{k=1}^{\infty} \mathrm{P}_{p}\left(N\left(A_{n} \geq k\right) \mid A_{n}\right) \tag{13}\\
& \geq \sum_{k=1}^{\infty} P\left(M_{1}+M_{2} \ldots M_{k} \leq n-k\right) \tag{14}
\end{align*}
$$

The second step follows from Equation (12)
Now, since $P(M \geq r)=g_{p}(r) \rightarrow \theta(p)$ as $r \rightarrow \infty$, we work with $M_{i}^{\prime}=$ $1+\min \left(M_{i}, n\right)$, as it lumps all large values at one place. We would now need to rewrite equation (12) in terms of M_{i}^{\prime}. Let the event $\left\{M_{1}+M_{2} \ldots \leq n-k\right\}$ occur. Since, $M_{i} \geq 0, \forall i \geq 0$, thus $M_{i} \leq n, \forall i \in[1, n]$. Hence, $M_{i}^{\prime}=1+M_{i}$, $\forall i \in[1, n]$. We thus get that

$$
\begin{equation*}
\left\{M_{1}+M_{2} \ldots \leq n-k\right\} \subseteq\left\{M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime} \leq n\right\} \tag{15}
\end{equation*}
$$

The reverse subset relationship also holds in Equation (15), and the argument follows similar lines. Hence, the following equality holds true :

$$
\begin{equation*}
\mathrm{P}_{p}\left(M_{1}+M_{2} \ldots \leq n-k\right)=\mathrm{P}_{p}\left(M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime} \leq n\right) \tag{16}
\end{equation*}
$$

Rewriting (12) using (16), we get

$$
\begin{equation*}
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \sum_{k=1}^{\infty} P\left(M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime} \leq n\right) \tag{17}
\end{equation*}
$$

Now define, $K=\min \left\{k: M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime}>n\right\}$. From the definition of K,

$$
\begin{equation*}
\left\{M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime} \leq n\right\} \leftrightarrow\{K \geq k+1\} \tag{18}
\end{equation*}
$$

Using (17) and (18),

$$
\begin{align*}
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) & \geq \sum_{k=1}^{\infty} P(K \geq(k+1)) \\
& =E(K)-1 \tag{19}
\end{align*}
$$

Now, note that K is a stopping time for the sequence $M_{1}^{\prime}, M_{2}^{\prime} \ldots M_{k}^{\prime}$.
Hence if $S_{k}=M_{1}^{\prime}+M_{2}^{\prime} \ldots M_{k}^{\prime}$, then using Wald's Equation (as described in Theorem 6.13)

$$
E\left(S_{K}\right)=E(K) E\left(M_{1}^{\prime}\right)
$$

Since $S_{K}>n$ (by Definition of K), we get

$$
\begin{equation*}
E(K)>\frac{n}{\left(E\left(M_{1}^{\prime}\right)\right.} \tag{20}
\end{equation*}
$$

To proceed further, we need to calculate $E\left(M_{i}^{\prime}\right)$.

$$
\begin{align*}
E\left(M_{1}^{\prime}\right) & =1+E\left(\min \left(M_{1}, n\right)\right) \\
& =1+\sum_{i=1}^{n} i . P\left(M_{1}=i\right)+\sum_{i=n+1}^{\infty} n \cdot P\left(M_{1}=i\right) \\
& =1+\sum_{i=1}^{n} P\left(M_{1} \geq i\right) \\
& =\sum_{i=0}^{n} P\left(M_{1} \geq i\right) \\
& =\sum_{i=0}^{n} g_{p}(i) \tag{21}
\end{align*}
$$

The $2 n d$ last step follows from the fact that $P\left(M_{1} \geq 0\right)=1$. Using Equations (19), (20) and (21), we get

$$
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\left(\sum_{i=0}^{n} g_{p}(i)\right)}-1
$$

The Lemma 6.8 is thus proved.
Note that the inequality in the Claim above holds for all values $0<p<1$. However, for $p>p_{c}$, due to the presence of an infinite giant component, $\sum g_{p}(i)$ will be quite large and the lower bound will be very weak. Thus the inequality is more useful for the case $p<p_{c}$.

The bound above on $E\left(N\left(A_{n}\right)\right)$ helps us bound the right hand side of the Equation (1). We thus get the following inequality :

$$
\begin{equation*}
g_{\alpha}(n) \leq g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta}\left(\frac{n}{\sum_{i=0}^{n} g_{p}(i)}-1\right) d p\right) \tag{22}
\end{equation*}
$$

Since, $g_{p}(i) \leq g_{\beta}(n) \forall p \leq \beta$, the integral on the RHS can be upperbounded to yield :

$$
\begin{equation*}
g_{\alpha}(n) \leq g_{\beta}(n) \exp \left(-(\beta-\alpha)\left(\frac{n}{\sum_{i=0}^{n} g_{\beta}(i)}-1\right)\right) \tag{23}
\end{equation*}
$$

The way, the proof will now proceed is that we would introduce a very weak bound for $g_{p}(i)$. Using that bound and the equation above, we would have a better and tigher bound on $g_{p}(i)$.

Lemma 6.9 For $p<p_{c}$, there exists a $\delta(p)$ such that

$$
\begin{equation*}
g_{p}(n) \leq \frac{\delta(p)}{\sqrt{n}} \tag{24}
\end{equation*}
$$

We would not be proving the above Lemma and instead use it to prove our next Corollary.

Corollary 6.10 There is a finite quanity $c(\alpha)$ such that for all $\alpha<p_{c}$

$$
\begin{equation*}
\sum_{i=0}^{\infty} g_{\alpha}(i)<c(\alpha) \tag{25}
\end{equation*}
$$

Proof of Corollary 6.10: From Lemma 6.9,

$$
\begin{align*}
\sum_{i=0}^{n} g_{p}(i) & \leq \sum_{i=0}^{n} \frac{\delta(p)}{\sqrt{i}} \\
& \leq \delta(p) \int_{0}^{n} \frac{1}{\sqrt{x}} d n \\
& =\triangle(p) \sqrt{n} \tag{26}
\end{align*}
$$

The inequality in the second step derives from the fact that, the integral corresponds to the area under the curve $f(x)=\frac{1}{\sqrt{n}}$ from 0 to n, which is obviously greater than sum of some individual values of $f(x)$ from 0 to n.

Now, given $\alpha<p_{c}$, take some β such that $\alpha<\beta<p_{c}$. Using Equation (26),

$$
\begin{equation*}
\sum_{i=0}^{n} g_{\beta}(i) \leq \triangle(\beta) \sqrt{n} \tag{27}
\end{equation*}
$$

Plugging the above inequality into Equation (23), we get

$$
\begin{aligned}
g_{\alpha}(n) & \leq g_{\beta}(n) \exp \left(1-\frac{\beta-\alpha}{\triangle(\beta)} \sqrt{n}\right) \\
& \leq \exp \left(1-\frac{\beta-\alpha}{\triangle(\beta)} \sqrt{n}\right)
\end{aligned}
$$

Taking a summation on both sides, we get

$$
\begin{equation*}
\sum_{i=0}^{\infty} g_{\alpha}(i) \leq \sum_{i=0}^{\infty} \frac{e}{\exp \left(\frac{\beta-\alpha}{\Delta(\beta)} \sqrt{i}\right)} \tag{28}
\end{equation*}
$$

The series on the RHS will converge to a finite value $c(\alpha)$, and hence we have an upperbound for $\sum_{i=0}^{\infty} g_{\alpha}(i) \forall \alpha<p_{c}$.
The above Corollary is hence proved.

We are now in a position to finally prove Theorem 6.1. Using Equation (23), for an $\alpha<p_{c}$, we can pick $\beta>\alpha$ and $<p_{c}$, such that

$$
\begin{aligned}
g_{\alpha}(n) & \leq g_{\beta}(n) \exp \left(-(\beta-\alpha)\left(\frac{n}{\sum_{i=0}^{n} g_{\beta}(i)}-1\right)\right) \\
& \leq g_{\beta}(n) \exp \left(1-\frac{\beta-\alpha}{c(\beta)}(n)\right) \\
& \leq \exp \left(1-\frac{\beta-\alpha}{c(\beta)}(n)\right)
\end{aligned}
$$

The second step above uses Corollary 6.10 and the last step follows from the fact that $g_{\beta} \leq 1$. Since, $\alpha<\beta<p_{c}$, we can upperbound the RHS of the equation above by $e^{-n \psi(\alpha)}$. Notice that a similar logic was also used after Equation (28).
Hence, we have finally proved the Theorem 6.1 that for $0<\alpha<p_{c}$,

$$
g_{\alpha}(n) \leq e^{-n \psi(\alpha)}
$$

6.2 The expectation of the size of the open cluster is finite

We are now in a position to show that the expectation of the open cluster is finite in the subcritical phase.

Theorem 6.11 If $p<p_{c}$ then

$$
\chi(p)<\infty
$$

Proof. First, let us note that for a d-dimensional mesh there is a constant c such that

$$
|S(n)| \leq c n^{d}
$$

Since, the probability $\mathrm{P}_{p}(M<\infty)=1$ when $p<p_{c}$, we can say that

$$
\chi(p)=\mathrm{E}_{p}(|C|)=\sum_{n=1}^{\infty} \mathrm{E}_{p}(|C| \mid M=n) \mathrm{P}_{p}(M=n)
$$

But if $M=n$ i.e. the largest diamond to which the origin is connected is $S(n)$ then $|C|$ is upper bounded by $|S(n)|$. Hence we can say

$$
\chi(p) \leq \sum_{n=1}^{\infty} c n^{d} \mathrm{P}_{p}(M=n)
$$

Now, using Theorem 6.1 we get

$$
\chi(p) \leq \sum_{n=1}^{\infty} c n^{d} \cdot e^{-n \Psi(p)}
$$

Hence proving that $\chi(p)$ is finite.

6.3 Appendix: Wald's Equation

Definition 6.12 Let X_{1}, X_{2}, \ldots be a sequence of random variables. The nonnegative integer valued random variable N is said to be a stopping time of the sequence $\left\{X_{n}\right\}$ if $\forall n \in \mathbb{N}$ the event $\{N=n\}$ is independent of $X_{i}, i \geq n+1$.

For example, if $\left\{X_{n}\right\}$ is a sequence of i.i.d. random variables such that

$$
\forall i: P\left(X_{i}=1\right)=p \text { and } P\left(X_{i}=0\right)=1-p
$$

then, $N_{1}=\min \left\{n: X_{1}+X_{2}+\ldots X_{n}=5\right\}$ is a stopping time for $\left\{X_{n}\right\}$.

$$
N_{2}= \begin{cases}3 & \text { if } X_{1}=0 \\ 1 & \text { if } X_{1}=1\end{cases}
$$

is also a stopping time for $\left\{X_{n}\right\}$. But

$$
N_{3}= \begin{cases}3 & \text { if } X_{4}=0 \\ 1 & \text { if } X_{4}=1\end{cases}
$$

is not a stopping time for $\left\{X_{n}\right\}$.
The expectations of the sum of a random prefix of the sequences of i.i.d. random variables have a good property, known as Wald's equation.

Theorem 6.13 If X_{1}, X_{2}, \ldots are i.i.d random variables distributed as X, with finite mean $(E(X)<\infty)$ and if N is a stopping time of this sequence such that $(E(N)<\infty)$ then

$$
E\left(\sum_{i=1}^{N} X_{i}\right)=E(N) E(X)
$$

Proof. Define a sequence of indicators

$$
I_{i}= \begin{cases}1 & \text { if } i \leq N \\ 0 & \text { if } i>N\end{cases}
$$

For each subscript i, we have a different random variable I_{i} dependent on random variable N. We Claim that X_{i} are I_{i} are independent of each other. To see this, rewrite I_{i} as

$$
I_{i}= \begin{cases}0 & \text { if } N \leq i-1 \\ 1 & \text { if } N>i-1\end{cases}
$$

From the first condition, the event $I_{i}=0$ depends on the event $N \leq i-1$, which is independent of $X_{i}, X_{i+1} \ldots$, since N is a stopping time for $\left\{X_{n}\right\}$. Hence, I_{i} and X_{i} are independent.

We now use these indicators to say that

$$
\sum_{i=1}^{N} X_{i}=\sum_{i=1}^{\infty} X_{i} I_{i}
$$

Taking expectations on both sides,

$$
\begin{align*}
\mathrm{E}\left(\sum_{i=1}^{N} X_{i}\right) & =\mathrm{E}\left(\sum_{i=1}^{\infty} X_{i} I_{i}\right) \tag{29}\\
& =\sum_{i=1}^{\infty} \mathrm{E}\left(X_{i} I_{i}\right) \tag{30}\\
& =\sum_{i=1}^{\infty} \mathrm{E}\left(X_{i}\right) \mathrm{E}\left(I_{i}\right) \tag{31}\\
& =\mathrm{E}(X) \sum_{i=1}^{\infty} \mathrm{E}\left(I_{i}\right) \tag{32}
\end{align*}
$$

The second step can be proved although the summation is infinite, but we omit the proof here. The third step follows from the fact that X_{i} and I_{i} are independent of each other

Now, since $\mathrm{E}\left(I_{i}\right)=\mathrm{P}(N \geq i)$ we can say that

$$
\mathrm{E}\left(\sum_{i=1}^{N} I_{i}\right)=\sum_{i=1}^{N} \mathrm{P}(N \geq i)=E(N)
$$

putting this back in (32) gives us the result.

