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In this lecture we pose the question: when is χ(p), the expected size of
the open cluster containing the origin, finite? Definitely, it is not finite when
p > pc. But is it always finite when p < pc? The answer is yes, χ(p) also
undergoes a critical phenomenon at pc, it is finite below and infinte above.
But to give this yes answer requires some work. In this lecture we will prove
a stronger result. We will show that the tail probability of the radius of an
open cluster decays exponentially. Once we have demonstrated this, the the
finiteness of χ(p) follows.

6.1 Exponential decay of the radius

This section will be devoted to proving the following theorem

Theorem 6.1 If p < pc, there exists a function Ψ(p) > 0, such that

Pp(0 ↔ ∂S(n)) < e−nΨ(p).

Proof. Let gp(n) denote Pp(An). By the Integral form of the Russo’s for-
mula(equation(2) of lecture 5), if An is an increasing event and N(An) denotes
the number of pivotal edges for An :

gα(n) = gβ(n) exp

(

−
∫ β

α

Ep(N(An)|An)

p
dp

)

.

Let 0 ≤ α < β ≤ 1. Since p < 1,

Ep(N(An)|An)

p
≥ Ep(N(An)|An).

gβ(n) exp

(

−
∫ β

α

Ep(N(An)|An)

p
dp

)

≤ gβ(n) exp

(

−
∫ β

α

Ep(N(An)|An)dp

)

.
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Since gα(n) = gβ(n) exp
(

−
∫ β

α

Ep(N(An)|An)
p

dp
)

, it follows that

gα(n) ≤ gβ(n) exp

(

−
∫ β

α

Ep(N(An)|An)dp

)

. (1)

To Prove the Theorem 6.1 , the above inequality will play an important
role. For that we need to find Ep(N(An)|An) so that we can use the above
inequality conclusively, where An is the event that an open path exists from
0 to ∂S(n) which is obviously an increasing event.

Suppose An occurs. Note that the pivotal edges for An will be uniquely
ordered e1,e2.....eN . This order is the sequence in which these pivotal egdes
will be visited in the open path from 0 to ∂S(n) which will be unique.

Also note that in the open path from origin to ∂S(n), either two successive
pivotal edges ei, ei+1 will be consecutive or the open component between them
is biconnected i.e. it has no cut edge. This is because between ei and ei+1

there are no pivotal edges and if the open component between ei and ei+1 has
a cut edge, it will definitely be a pivotal edge. To make the above discussion
more clear, let us put it more formally. (Also see Figure 1.)

Let ei = 〈xi, yi〉, where xi and yi are the end points of ei such that
in the open path from origin to ∂S(n), xi is visited before yi. For every
i ∈ {1, 2, ...N} either yi = xi+1 or the open component between ei and ei+1

has no cut edge. The latter is equivalent to the following two statements:

1. The open component between yi and xi+1 is biconnected.

2. There are 2 edge disjoint paths between yi and xi+1.

For each i ∈ {1, 2, ...N}, let ρi denote δ(yi−1, xi), where y0 = 0 and δ(u, v)
is the smallest number of edges required to traverse between u and v.

Let M denote max{k : Ak occurs} i.e. M is the radius of the largest ball
whose boundary contains a vertex having an open path to origin.Note that

Pp(M ≥ m) = gp(m) (2)

because the event M ≥ m is equivalent to the event that the largest ball,
whose boundary contains a vertex having an open path to origin, has radius
atleast m which in turn is equivalent to saying that there is atleast an open
path from origin to the boundary of the ball of radius m.
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Figure 1: Sequence of critical edges and biconnected components for the
event An

Lemma 6.2 Given a non-negative integer r ≤ n−1. Then for any p ∈ (0, 1):

Pp(ρ1 ≤ r|An) ≥ Pp(M ≤ r).

Before proceeding to the proof of this lemma, it is important to under-
stand that the events (ρ1 ≤ r|An) and (M ≤ r) are related only mathe-
matically and with respect to their probability measures. The relationship
between their probabilities doesn’t imply that there exists some sort of sub-
set/superset relationship between them. After this disclaimer, let’s prove the
lemma.
Proof of Lemma 6.2: Consider the event: (ρ1 > r) ∩ An. If ρ1 > r

i.e. ρ1 ≥ r + 1, then two edge disjoint open paths exist between origin and
∂S(r + 1).

Since r + 1 ≤ n, (ρ1 > r)∩ An implies there are edge disjoint open paths
from origin to ∂S(r + 1) and ∂S(n). This is because of the existence of two
edge disjoint open paths from origin to ∂S(r +1). Even if one of these paths
goes to ∂S(n), there is still an open path from origin to ∂S(r + 1) which is
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edge disjoint from the former. So we have,

{ρ1 > r} ∩ An → Ar+1 ◦ An. (3)

This is same as saying that

{ρ1 > r} ∩ An ⊆ Ar+1 ◦ An.

It follows that

Pp({ρ1 > r} ∩ An) ≤ Pp(Ar+1 ◦ An).

By using BK inequality, we get

Pp({ρ1 > r} ∩ An) ≤ Pp(Ar+1) · Pp(An).

Rearranging terms, we obtain

Pp({ρ1 > r} ∩ An)

Pp(An)
≤ Pp(Ar+1).

This is same as saying that

Pp({ρ1 > r}|An) ≤ Pp(Ar+1).

When complements of the events on both sides are taken, the inequality
reverses signs and since Pp(Ar+1) is same as gp(r + 1) we get

Pp({ρ1 ≤ r}|An) ≥ 1 − gp(r + 1).

Applying equation (2) we obtain

Pp({ρ1 ≤ r}|An) ≥ 1 − Pp(M ≥ (r + 1)).

It follows that

Pp({ρ1 ≤ r}|An) ≥ Pp(M ≤ r).

Note that the converse of equation (3) is not true i.e. Ar+1 ◦ An doesn’t
necessarily imply {ρ1 > r} ∩ An. The counterexample can be seen in Figure
2 which illustrates an outcome of a percolation experiment.

In Figure 2, let the only open edges be the ones that have been high-
lighted. The event Ar+1 ◦An is occuring because there are two edge disjoint
open paths from origin to ∂S(n) and ∂S(r + 1). But ρ1 = 0 and therefore
ρ1 ≤ r. So it is clear that Ar+1 ◦ An doesn’t imply {ρ1 > r} ∩ An.
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∂S(n)

∂S(r + 1)

Figure 2: Counter-example to converse of equation (3)

Lemma 6.3 Given k > 0 and non negative integers r1, r2 . . . rk such that
k
∑

i=1

rk ≤ n − k. Then, for 0 < p < 1,

Pp(ρk ≤ rk, ρi = ri, 1 ≤ i < k|An) ≥ Pp(M ≤ rk) · Pp(ρi = ri, 1 ≤ i < k|An).

Proof of Lemma 6.3: Note that Lemma 6.2 was a special case (k = 1) of
this Lemma. Here we outline the proof for a general k. Let De be the set of
all vertices reachable from origin along open paths without using e.

Definition 6.4 Define event Be for an edge e=〈u, v〉 as follows :

1. Exactly one of u, v is in De, say u

2. e is open

3. De contains no vertex of ∂Sn

4. The pivotal edges for {0 ↔ v} are in order 〈x1, y1〉, 〈x2, y2〉 . . . 〈xk−1, yk−1〉
, where xk−1 = u and yk−1 = v
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5. δ(yi−1, xi) = ri ,where 1 ≤ i < k and y0 = 0.

Let B = ∪Be Notice that for a particular outcome w, Be can occur for
only one edge e in the lattice. This follows from the uniqueness of ordering
of pivotal edges, as explained in the beginning of the section.

Suppose outcome w ∈ An∩B. Let e be the unique edge such that w ∈ Be.
Construct graph G = (V ′, E ′) where V ′ = De ∪ {v} and E ′ = {(x, y) | x ∈
V ′, y ∈ V ′}. We call v as y(G) and also mark it in the graph. Now, using
the concept of marginal distribution,

Pp(An ∩ B) =
∑

%

Pp((An ∩ B ∩ (G = %)) (4)

=
∑

%

Pp(B, G = %).Pp(An|B, G = %) (5)

Note that the for a graph G = %, the edge e can be different, depending
on the percolation outcome w. Therefore, to differentiate the two instances
of G, the vertex y(G) has been marked, thus giving independent identities to
the two graphs, depending upon the unique edge responsible. Now consider
P (An|B, G = %).

Claim 6.5 The event {An|B, G = %} is the same as the event {y(%) ↔
∂Sn off %.}

Let An occur given that B occurs and G = %. Since, the edge e is a pivotal
edge and the event An occurs, y(%) is connected to ∂Sn without crossing %.
The latter assertion is true, because if a path from y(%) to ∂Sn passes through
edge 〈a, b〉, where b ∈ %, An can occur without passing through edge e. This
can be done by using the open path (0, b), (b, ∂Sn). Thus e would no longer
remain the pivotal edge. Hence y(%) is connected to ∂Sn without crossing %.

In Figure 3, we see an illustration of the argument: if y(%) is connected
to ∂S(n) through a path which touches % (the connection is shown with a
dotted line line), then e cannot be a pivotal edge, which is a contradiction.
Hence Claim 6.5 is proved.

From Claim 6.5 and (5), we get

Pp(An ∩ B) =
∑

%

Pp(B, G = %) · Pp(y(%) ↔ ∂Sn off %) (6)
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0

∂S(n)

y(%)%

e

Figure 3: y(%) not connected to ∂Sn off % contradicts the pivotality of e.

Now, similar to (5), the following equation holds :

Pp({ρk > rk} ∩ An ∩ B) =
∑

%

Pp(B, G = %) · Pp({ρk > rk} ∩ An|B, G = %) (7)

Now let event {ρk > rk} ∩ An occur. ρk = δ(y(%), xk), where xk could
lie on ∂Sn, or be the endpoint of the kth pivotal edge. Also, let S(a, b)
denote the set of points at distance ≤ b from point a. Since, ρk > rk, the
event {y(%) ↔ ∂S(y(%), rk + 1)} occurs. Also, since An occurs, the event
{y ↔ ∂Sn} occurs.

The pivotality of e ensures that both the above events use edges outside
%. Moreover, since there are no pivotal edges between e and 〈xk, yk〉, this
ensures that there are two edge disjoint paths from y(%) to xk. One of them
can be used for the event {y(%) ↔ ∂S(y(%), rk + 1)} and the other for event
An.

In Figure 4 we see an illustration of this argument. Between the second
vertex of the k − 1th pivotal edge i.e. yk−1 = y(%) and the first vertex of the
kth pivotal edge, lie two edge disjoint paths. One can be seen as part of a
path that extends to ∂S(n) and the other can be seen to be a path from y(%)
to ∂S(y(%), rk + 1).

From the above analysis,

({ρk > rk} ∩ An|B, G = %) ⊆ (y ↔ ∂S(y(%), rk + 1) off %) ◦ (y(%) ↔ ∂Sn off %)
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0

xk−1

∂S(n)

∂S(y(%), rk + 1)

yk−1 = y(%)

xk

Figure 4: Disjoint Paths to ∂Sn and ∂S(y(%), rk + 1)

Now applying BK Inequality to the RHS of the above equation, we get

Pp({ρk > rk} ∩ An|B, G = %) ≤ Pp(y ↔ ∂S(y(%), rk + 1) off %) · Pp(y(%) ↔ ∂Sn off %)

Using Equations (7) and (8) ,we obtain

Pp({ρk > rk} ∩ An ∩ B) ≤
∑

%

Pp(B, G = %) · Pp(y ↔ ∂S(rk + 1, y(%)) off %)

·Pp(y(%) ↔ ∂Sn off %) (8)

Using translation invariance, the 2nd term of the RHS above can be brought
out common and can be replaced by Pp(Ark+1) = gp(rk+1). This is because,

Pp(y ↔ ∂S(rk + 1, y(%)) off %) ≤ Pp(y ↔ ∂S(rk + 1, y(%))) (9)

and then we can apply translation invariance. Hence, using this finding and
(6), we get

Pp({ρk > rk} ∩ An ∩ B) ≤ gp(rk + 1)Pp(An ∩ B)

By some manipulation of the above equation, we get:

Pp({ρk ≤ rk}|B ∩ An) ≥ 1 − gp(rk + 1) (10)

Multiplying both sides of the equation with P (B|An) ,and using the Defini-
tion of B and in particular Be, we get

Pp(ρk ≤ rk, ρi = ri for 1 ≤ i < k|An) ≥ Pp(M ≤ rk) · Pp(ρi = ri for 1 ≤ i < k|An)
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Hence, the Lemma 6.3 is now proved.
In our goal to prove Theorem 6.1, we would actually use a variant of the

above Theorem i.e

Lemma 6.6 Given k > 0 and non negative integers i and rk such that i +
rk ≤ n − k. Then, for 0 < p < 1,

Pp(ρk ≤ rk, ρ1+ρ2+. . .+ρk−1 = i|An) ≥ Pp(M ≤ rk)·Pp(ρ1+ρ2+. . .+ρk−1 = i|An).

Proof of Lemma 6.6: The proof for the Lemma above remains exactly the
same as for Lemma 6.3. The only change is in Definition of Be, in which we
replace condition 5 with the following condition 5’.

ρ1 + ρ2 . . . ρk−1 = i.

The Corollary below would be directly used in the proof of Theorem 6.1,
and would use the Lemma stated above.

Corollary 6.7

Pp(ρ1 + ρ2 + ρ3...ρk ≤ n − k|An) ≥ Pp(M1 + M2 . . .Mk ≤ n − k)

where M1, M2 . . . is a sequence of independent random variables distributed
as M.

Proof of Corollary 6.7: Using the concept of marginal distribution,

Pp(ρ1 + ρ2 + . . . ρk ≤ n − k|An) =
n−k
∑

i=0

Pp(ρ1 + ρ2 . . . ρk−1 = i, ρk ≤ n − k − i|An)

Using the Claim made in Lemma 6.6, we get

Pp(ρ1 + ρ2 + . . . ρk ≤ n − k|An) ≥
n−k
∑

i=0

P (M ≤ n − k − i)Pp(ρ1 + ρ2 + . . . ρk−1 = i|An).

≥ Pp(ρ1 + ρ2 . . . ρk−1 + Mk ≤ n − k|An) (11)

We iterate similar to above, replacing ρi in each step by Mi, and get the RHS
of the Corollary.

Having proved the above Corollary, we are now in a position to move
forward with our aim to prove Theorem 6.1. We prove another Lemma
below in this direction.
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Lemma 6.8 For 0 < p < 1,

Ep(N(An)|An) ≥
n

(

n
∑

i=0

gp(i)

) − 1

Proof of Lemma 6.8: Note that if ρ1 + ρ2 . . . ρk ≤ n − k, then δ(0, yk) ≤
n − k + k ≤ n. This implies that even by using the first k pivotal edges, we
can atmost just reach ∂Sn. Thus, to reach ∂Sn, the number of pivotal edges
required ≥ k . Hence, N(An) ≥ k. Hence,

Pp(N(An) ≥ k|An) ≥ Pp(ρ1 + ρ2 + ρ3...ρk ≤ n − k|An)

≥ P (M1 + M2 . . .Mk ≤ n − k) (12)

The second step above uses the Corollary 6.7, which was proved prior to this
Lemma. Now, using the definition of Expectation value,

Ep(N(An)|An) =
∞
∑

k=1

Pp(N(An ≥ k)|An) (13)

≥
∞
∑

k=1

P (M1 + M2 . . .Mk ≤ n − k) (14)

The second step follows from Equation (12)
Now, since P (M ≥ r) = gp(r) → θ(p) as r → ∞, we work with M ′

i =
1+min(Mi, n), as it lumps all large values at one place. We would now need
to rewrite equation (12) in terms of M ′

i . Let the event {M1 +M2 . . . ≤ n−k}
occur. Since, Mi ≥ 0, ∀i ≥ 0, thus Mi ≤ n, ∀i ∈ [1, n]. Hence, M ′

i = 1 + Mi,
∀i ∈ [1, n]. We thus get that

{M1 + M2 . . . ≤ n − k} ⊆ {M ′
1 + M ′

2 . . . M ′
k ≤ n} (15)

The reverse subset relationship also holds in Equation (15) , and the argu-
ment follows similar lines. Hence, the following equality holds true :

Pp(M1 + M2 . . . ≤ n − k) = Pp(M
′
1 + M ′

2 . . .M ′
k ≤ n) (16)

Rewriting (12) using (16) ,we get

Ep(N(An)|An) ≥
∞
∑

k=1

P (M ′
1 + M ′

2 . . .M ′
k ≤ n) (17)
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Now define, K = min{k : M ′
1 + M ′

2 . . .M ′
k > n}. From the definition of K,

{M ′
1 + M ′

2 . . .M ′
k ≤ n} ↔ {K ≥ k + 1} (18)

Using (17) and (18),

Ep(N(An)|An) ≥
∞
∑

k=1

P (K ≥ (k + 1))

= E(K) − 1 (19)

Now, note that K is a stopping time for the sequence M ′
1,M

′
2 . . .M ′

k.
Hence if Sk = M ′

1 + M ′
2 . . .M ′

k, then using Wald’s Equation (as described in
Theorem 6.13)

E(SK) = E(K)E(M ′
1).

Since SK > n (by Definition of K), we get

E(K) >
n

(E(M ′
1)

(20)

To proceed further, we need to calculate E(M ′
i).

E(M ′
1) = 1 + E(min(M1, n))

= 1 +

n
∑

i=1

i.P (M1 = i) +

∞
∑

i=n+1

n.P (M1 = i)

= 1 +

n
∑

i=1

P (M1 ≥ i)

=

n
∑

i=0

P (M1 ≥ i)

=
n
∑

i=0

gp(i) (21)

The 2nd last step follows from the fact that P (M1 ≥ 0) = 1. Using Equations
(19), (20) and (21), we get

Ep(N(An)|An) ≥
n

(

n
∑

i=0

gp(i)

) − 1
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The Lemma 6.8 is thus proved.

Note that the inequality in the Claim above holds for all values 0 < p < 1.
However, for p > pc, due to the presence of an infinite giant component,
∑

gp(i) will be quite large and the lower bound will be very weak. Thus the

inequality is more useful for the case p < pc.
The bound above on E(N(An)) helps us bound the right hand side of the

Equation (1). We thus get the following inequality :

gα(n) ≤ gβ(n) exp

(

−
∫ β

α

(

n
∑n

i=0 gp(i)
− 1

)

dp

)

(22)

Since, gp(i) ≤ gβ(n)∀p ≤ β, the integral on the RHS can be upperbounded
to yield :

gα(n) ≤ gβ(n) exp

(

−(β − α)

(

n
∑n

i=0 gβ(i)
− 1

))

(23)

The way, the proof will now proceed is that we would introduce a very
weak bound for gp(i). Using that bound and the equation above, we would
have a better and tigher bound on gp(i).

Lemma 6.9 For p < pc, there exists a δ(p) such that

gp(n) ≤ δ(p)√
n

(24)

We would not be proving the above Lemma and instead use it to prove
our next Corollary.

Corollary 6.10 There is a finite quanity c(α) such that for all α < pc

∞
∑

i=0

gα(i) < c(α)

(25)
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Proof of Corollary 6.10: From Lemma 6.9,

n
∑

i=0

gp(i) ≤
n
∑

i=0

δ(p)√
i

≤ δ(p)

∫ n

0

1√
x

dn

= 4(p)
√

n (26)

The inequality in the second step derives from the fact that, the integral
corresponds to the area under the curve f(x) = 1√

n
from 0 to n, which is

obviously greater than sum of some individual values of f(x) from 0 to n.
Now, given α < pc, take some β such that α < β < pc. Using Equation

(26),

n
∑

i=0

gβ(i) ≤ 4(β)
√

n (27)

Plugging the above inequality into Equation (23), we get

gα(n) ≤ gβ(n) exp

(

1 − β − α

4(β)

√
n

)

≤ exp

(

1 − β − α

4(β)

√
n

)

Taking a summation on both sides, we get

∞
∑

i=0

gα(i) ≤
∞
∑

i=0

e

exp
(

β−α
4(β)

√
i
) (28)

The series on the RHS will converge to a finite value c(α), and hence we have

an upperbound for

∞
∑

i=0

gα(i) ∀α < pc.

The above Corollary is hence proved.
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We are now in a position to finally prove Theorem 6.1. Using Equation
(23), for an α < pc, we can pick β > α and < pc, such that

gα(n) ≤ gβ(n) exp

(

−(β − α)

(

n
∑n

i=0 gβ(i)
− 1

))

≤ gβ(n) exp

(

1 − β − α

c(β)
(n)

)

≤ exp

(

1 − β − α

c(β)
(n)

)

The second step above uses Corollary 6.10 and the last step follows from
the fact that gβ ≤ 1. Since, α < β < pc, we can upperbound the RHS of the
equation above by e−nψ(α). Notice that a similar logic was also used after
Equation (28).
Hence, we have finally proved the Theorem 6.1 that for 0 < α < pc,

gα(n) ≤ e−nψ(α)

6.2 The expectation of the size of the open cluster is

finite

We are now in a position to show that the expectation of the open cluster is
finite in the subcritical phase.

Theorem 6.11 If p < pc then

χ(p) < ∞.

Proof. First, let us note that for a d-dimensional mesh there is a constant c

such that
|S(n)| ≤ cnd.

Since, the probability Pp(M < ∞) = 1 when p < pc, we can say that

χ(p) = Ep(|C|) =
∞
∑

n=1

Ep(|C| | M = n)Pp(M = n).
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But if M = n i.e. the largest diamond to which the origin is connected is
S(n) then |C| is upper bounded by |S(n)|. Hence we can say

χ(p) ≤
∞
∑

n=1

cndPp(M = n).

Now, using Theorem 6.1 we get

χ(p) ≤
∞
∑

n=1

cnd.e−nΨ(p).

Hence proving that χ(p) is finite.

6.3 Appendix: Wald’s Equation

Definition 6.12 Let X1,X2,.... be a sequence of random variables. The non-
negative integer valued random variable N is said to be a stopping time of the
sequence {Xn} if ∀n ∈ N the event {N = n} is independent of Xi, i ≥ n + 1.

For example, if {Xn} is a sequence of i.i.d. random variables such that

∀i : P (Xi = 1) = p and P (Xi = 0) = 1 − p

then, N1 = min{n : X1 + X2 + ...Xn = 5} is a stopping time for {Xn}.

N2 =

{

3 if X1 = 0,
1 if X1 = 1.

is also a stopping time for {Xn}. But

N3 =

{

3 if X4 = 0,
1 if X4 = 1.

is not a stopping time for {Xn}.
The expectations of the sum of a random prefix of the sequences of i.i.d.

random variables have a good property, known as Wald’s equation.

Theorem 6.13 If X1, X2, . . . are i.i.d random variables distributed as X,
with finite mean (E(X) < ∞) and if N is a stopping time of this sequence
such that (E(N) < ∞) then

E

(

N
∑

i=1

Xi

)

= E(N)E(X).
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Proof. Define a sequence of indicators

Ii =

{

1 if i ≤ N,

0 if i > N.

For each subscript i, we have a different random variable Ii dependent on
random variable N . We Claim that Xi are Ii are independent of each other.
To see this, rewrite Ii as

Ii =

{

0 if N ≤ i − 1,
1 if N > i − 1.

From the first condition, the event Ii = 0 depends on the event N ≤ i − 1,
which is independent of Xi, Xi+1 . . . , since N is a stopping time for {Xn}.
Hence, Ii and Xi are independent.

We now use these indicators to say that

N
∑

i=1

Xi =
∞
∑

i=1

XiIi.

Taking expectations on both sides,

E

(

N
∑

i=1

Xi

)

= E

( ∞
∑

i=1

XiIi

)

(29)

=
∞
∑

i=1

E(XiIi) (30)

=

∞
∑

i=1

E(Xi)E(Ii) (31)

= E(X)

∞
∑

i=1

E(Ii) (32)

The second step can be proved although the summation is infinite, but
we omit the proof here. The third step follows from the fact that Xi and Ii
are independent of each other

Now, since E(Ii) = P(N ≥ i) we can say that

E

(

N
∑

i=1

Ii

)

=
N
∑

i=1

P(N ≥ i) = E(N).

putting this back in (32) gives us the result.
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