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We now move on to one of the important tools that will be used repeatedly
in the study of percolation: the FKG inequality. Before we do, we identify a
particular class of events which will come up again and again as we proceed.

3.1 Increasing events

Recall the partial order defined on the sample space {2 in a previous lecture:
For wq,ws € Q) we say that w; < wy if

Ve € B2 wi(e) < wy(e).

= Any edge open in wy, must be open in ws.

Now consider an event A C 2 defined with respect to two vertices x and

y as follows
A : There is an open path from x to y.

Notice that for some w; € A and wy € €, if w; < wy then wy € A, since
the edges which are open in wy, K (w;) are enough to guarantee the desired
path, and the edges open in wy, are a superset of K (w).

Now consider another event B C € defined on two verices u and v:

B : There is a closed path from u to v.

Now here if w; € B then some wy satisfying w; < wy may or may not be
in B. But here we are able to claim that if wy € B then Vw; < wy : w; € B.

Now consider an event C' C ) defined on vertices w and z

C' : There is path with alternating open and closed edges from w
to z.

For this event C' it is the case that if w; € C there may be an wy such
that w; < wy and we ¢ C. And there may be w3 < w; such that ws ¢ C.
Motivated by this discussion we give the following definition:

Definition 3.1 A € F is called an increasing event if [4(w) < I4(w'), when-
ever w < ', where 14 is the indicator variable of A.



Example 3.2 Some examples of increasing events:
e The origin is contained in an infinite cluster.
e There is an open path from x to y.

o The edges of B(n) are open.

Similarly, we have that a random variable N is called an increasing ran-
dom variable if for wy,ws € Q, N(w;) < N(wy) whenever w; < ws.

Example 3.3 Some examples of increasing random variables:
o The size of the open cluster containing vertex x.

o The largest k such that all the edges in B(k) are open.

Intuitively it appears that the probability that an increasing event occurs
should increase as the probability of edges remaining open increases. This is
in fact true.

Theorem 3.4 For an increasing event A, and an increasing random variable
N, given probabilities p; < po,
Ppl (A)
Ep, (N)

IA A

Py, (A), (1)
Ep, (N). (2)

Proof. We use a coupling argument to prove this theorem, noting that
this coupling argument will be used often as we proceed with the study of
percolation. We will only prove the first statement, leaving the second as an
exercise.

For each e € E, let us define a random variables X (e) distributed uni-
formly at random in [0, 1]. Furthermore, for a probability value p, we define
a quantity 7,(e) as follows

1 ifX(e)<p
mhle) = { 0 otherwise

What we are doing here is using the variables X (e) as the basic random
experiment from which we can generate percolation processes for whatever



value of p we want. The value of 7,(e) tells us whether the edge e is open or
closed in the percolation process with probability p generated this way:.

Now, let us use this method to generate two percolation processes, one
for p; and the other for p,. Note that the random experiment of choosing
the values of the X (e)s is conducted only once. Now consider the outcomes
generated for these two processes:

Wp, = Ty (1), (e2) - ..

Wpy = Tipy (61)77102(62) cee
So, it is easy to see that w,, < w,, if p; < ps. And since A is an increasing
event w, € A implies that w,, € A which proves the result. m

In an earlier lecture we proved using Kolmogorov’s 0-1 law that the per-
colation probability #(p) is either 0 or 1. Now, with Theorem 3.4 we are in
a position to say that the graph of the percolation probability does not look
like Figure 1. It looks like Figure 2.
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Figure 1: An incorrect picture of the percolation probability.

3.2 The FKG Inequality

Given the definition of increasing events, it is natural to think that two
increasing events might be positively correlated. The FKG inequality shows
precisely this.

Theorem 3.5 FKG inequality. If A and B are increasing events then

Pp(ANB) = Py(A) - Py(B).



Figure 2: A correct picture of the percolation probability.

Also, if X and Y are increasing random variables
Ep(XY> 2 Ep(X> ) Ep(Y)-

Proof. We will not give the whole proof here, just a flavour of it.

Let X and Y be two increasing r.v. Assume that they only depend on
one edge e,which has two states 0 and 1. Take two values ; and v each of
which can have 2 values: 1 and 1. Now, since X and Y are increasing r. v.
the signs of X (71) — X(72) and Y (v;1) — X (72) are the same no matter what
values v; and 7, take. Hence

(X () = X()IY (1) =Y (72)] 2 0

Summing over all values of v; and v, we get

Y X)) = XY () = Y (32)]Py(w(e) = 7)Py(w(e) = 72) > 0.

717726{170}

Some manipulation shows that this is equivalent to saying that
2(Ep(XY) = Ep(X)E,(Y)) = 0.

Which proves the result for increasing random variables which depend
on only one edge. The rest of the proof proceeds by using this as the base
case of an induction which extends this to increasing random variables that
depend only on a finite number of edges. Some results from analysis help us
extend it to all increasing random variables. We omit those details, referring
the reader to [2].



To prove the first statement of the theorem we consider the special random
variables, I, and Ip which are the indicator random variables of the events
A and B. Since E,(14) = P,(A), the result follows. u

Example 3.6 The FKG inequality can be used to prove that the probability
that a vertex lies in an infinite cluster is translation invariant.

Consider an infinite mesh with points x and y. Let 6(p, ) be the prob-
ability that  lies in an infinite cluster. Then p.(z) = sup{p : 6(p,xz) = 0}.
Also, let the ad-hoc notation x < oo mean that x is a part of an infinite
cluster.

Now, if z is part of an infinite cluster, it could be that y is also part of
that cluster, or it could be that y is not part of that cluster. In general we
can say that

T 002 (e y)N(y < 00).

This means that
Py(z < 00) > Pyl(z < y) N (y < 00)]

Now, since both = < y and y <+ oo are increasing events we can use the
FKG inequality and get that

Py(z < 00) 2 Py(z < y) - Pply < 00).

Hence if P,(z < 00) is 0 then P,(y <> o0o) must be 0 since P,(z < y) is
non-zero. And this means that

Pe(y) = pe().

Exactly the same argument can be made with x and y interchanged,
thereby proving the following theorem.

Theorem 3.7 For any two vertices x and y of L%

pe(r) = pe(y)-



3.3 The general form of the FKG inequality

The FKG inequality was actually proved for a more general setting than
what has been described above. In this section we give the general form of
the FKG inequality and an application of it to a simple occupancy problem.
The reader only interested in percolation can safely skip this section.

We start by introducing some notation. A lattice is a partially ordered
set in which each pair of elements, x and y, has a unique minimal upper
bound, called the join of x and y, denoted z Vy, and a unique maximal lower
bound, called the meet of x and y and denoted = A y. A lattice L is said to
be distributive if, for all x,y,z € L

cA(yVz)=(@xAy)V(xAz)

Given a distributive lattice L, a function p : L — R, is called log-
supermodular if
p(x) - ply) < plxVy) - plzAy)
for all z,y € L.
A function f : L — R is non-decreasing if f(x) < f(y) whenever z < y
and non-increasing if f(x) > f(y) whenever = < y.
In this setting, we have the following statement of the FKG inequality:

Theorem 3.8 (FKG Inequality) Let L be a finite distributive lattice and
let w : L — Ry be a log-supermodular funtion. Then iof f,g: L — R,y are
both non-decreasing or non-increasing, we have

<Z u(x)f(x)> - <Z u(x)g(x)> < (Z u(x)f(x)g(x)) - (Zu(@)

€L €L €L zeL

If we take p to be a measure on L. Assuming p to not be identically 0,
we can define the expectation w.r.t. u of a function f as

> ver M) f(2)
erL U(fp) ‘

With this notation, we can restate the FKG inequality as follows: For
any log-supermodular funtion p defined on a distributive lattice and any
two functions f : L — R and g : L — R which are both non-increasing or
non-decreasing,

Eu[f] =

Eulf - 9] = Eu[f]- Eulg].
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And, if one of them is non-increasing and the other non-decreasing,

Eulf - 9] < Eu[f]- Eulg].

3.4 A simple application of the general FKG inequality

The application described in this section is taken from the work of Dubhashi
and Ranjan [1] as discussed in [3].

Suppose we throw m balls independently into n bins uniformly at random,
for positive integers m and n. Let X; be the random variable denoting the
number of balls in the ith bin. We want to show the intuitively obvious result
that X; and X are negatively correlated. And we want to do this without
any calculation.

Let us begin by proving the following lemma

Lemma 3.9 Given two bins, i and j, and two positive integers t;,t; < m,
P((Xi =2 ) N(X; 2 1)) < P(X; > 4) - P(X; > t5).

Proof. We will use the general version of the FKG inequality for this.

In order to create an appropriate lattice, we use an m-dimensional vector
a = (a1, as9,...,ay,) to denote each outcome of the experiment, where a; is
the bin number (between 1 and n) of the bin into which the ith ball landed.
Let L be the set of all such outcomes.

Define a partial order: a@ <; b if a; < b; for all i € [m].

Suppose © = (x1,...,2,) and y = (Y1, ..., Ym) are two m-dimensional
vectors in L. Define u = (uy, ..., u,,) such that u; = max(z;,y;) for 1 <i < m.
It is easy to verify that u = x Vy. Similarly, if we define v = (vy, ..., v,,) such
that v; = min(z;,y;) for 1 < i <m, it is easy to verify that v =z A y.

Clearly, v and v are unique for a given pair z and y. Hence, L is a lattice.

To show that L is a distributive lattice, we will prove the following simple
fact:

Fact 3.10 If a,b, c are three real numbers, then
min(a, max(b, c)) = mazx(min(a,b), min(a, c)).

Proof. There are two cases: b < cor b > c¢. Since the cases are symmetric, we
will assume that b < ¢. The other case is similar. In this case, maz(b, c) = c.
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Hence, the LHS = min(a,c). For b < ¢, min(a,b) < min(a,c). Hence, the
RHS = min(a, c). u
From the above fact it follows that

min(z;, max(y;, z;)) = max(min(z;, y;), min(z;, z;)) for 1 <i < m.

Note that the LHS is the i-th component of the m-dimensional vector
x A (y V z), whereas the RHS is the i-th component of the m-dimensional
vector (z Ay)V (z A z). It follows that,

cA(yVz)=(@Ay)V(zAz).

Hence, L is a distributive lattice.

It is easy to see that pu is trivially log-supermodular since u(x) - u(y) =
1/n™-1/n™ = 1/n*" and similarly u(zVy)-u(zAy) =1/n™-1/n™ = 1/n*™.

Given any two bins ¢ and j, note that we can renumber the bins so that
bin 7 becomes bin 1 and bin j becomes bin n.

Consider now the events A = {X; > t;} and B = {X,, > ¢,;}. Given the
way the lattice is (partially) ordered, it is clear that A is a decreasing event
and B is an increasing event. This is because if © < y for some z,y € L, this
means that for each ball i z; < y; i.e. if there were some balls in bin 1 in
x, in y they could have moved out to some other bin with a higher number.
However, if we consider the balls which were already in bin n, they cannot
move to a higher bin number. On the other hand, balls with a smaller bin
number can move into bin n.

Hence, using FKG inequality, the result follows. [ ]

We leave it to the reader to show that Lemma 3.9 can be used to show
that X; and X; are negatively correlated.
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