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In this lecture we prove the celebrated result, first shown by Kesten, that
the critical probability of L

2 is 1/2. The proof depends on the uniqueness
of the infinite component in the supercritical phase and the fact that χ(p) is
finite in the subcritical phase. These two theorems are stitched together by
the self-duality of L

2 i.e. by the fact that L
2 and its dual L

2
d are isomorphic

to each other.

11.1 Preliminaries

Lemma 11.1 The “square root trick”. Given a set of increasing events

A1, A2, . . ., Am, each having equal probability

Pp(A1) ≥ 1 −

{

1 − Pp

(

m
⋃

i=1

Ai

)}
1

m

.

Proof.

1 − Pp

(

m
⋃

i=1

Ai

)

= Pp

(

m
⋂

i=1

Āi

)

≥
m
∏

i=1

Pp(Āi)

= [1 − Pp(A1)]
m

where the second step follows from the FKG inequality and the third step
follows from the equiprobability of the events Ai. Taking mth root on both
sides, we get,

{

1 − Pp(

m
⋃

i=1

Ai)
}

1

m

≥ [1 − Pp(A1)].
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This can be rewritten as

1 −
{

1 − Pp(

m
⋃

i=1

Ai)
}

1

m

≤ 1 − [1 − Pp(A1)]

= Pp(A1)

which proves the result.

11.2 Critical probability for L
2 is 1/2.

Theorem 11.2

pc(L
2) =

1

2
.

Proof. We will prove this theorem in 2 parts. First, we shall show that
pc ≥ 1

2
by proving that θ( 1

2
) = 0. Secondly, we shall show that pc ≤ 1

2

by proving that 1 − p ≥ pc > p, for any value of p, which is violated for
(pc >)p ≥ 1

2
.

For proving the first part, assume that θ( 1
2
) > 0.

Define the box T(n) with (0, 0) as it’s lower left corner and (n, n) as it’s
upper right corner (see Figure 1).

Define the event Ar(n) to be the occurence of an open path of infinite
length starting at a vertex on the right boundary of T (n) which uses no other
vertex of T (n), as shown in Figure 1. The events Al(n), At(n) and Ab(n) are
defined similarly for open paths starting at a vertex on the right, top and
bottom boundary of T (n) respectively.

Now, suppose that there exists a vertex in T (n) which is part of an infinite
cluster. Since there are only a finite number of points in T (n), for finite n,
the cluster will extend beyond the boundary of T (n) and there would be
atleast one vertex on the boundary of T (n) such that there exists an open
path of infinite length from it. Either this path doesn’t include any other
vertex from T (n) or it intersects the boundary of T (n) more than once, in
which case, consider the path beginning at the last point of intersection of
the boundary with the open path.

This shows that if a vertex in T (n) is part of an infinite cluster, there is
atleast one vertex on the boundary of T (n) such that there exists an open
path of infinite length from it which doesn’t include any other vertex from
T (n). The converse of this statement holds trivially.

2



Ar(n)

(n, n)

(0,0)

Figure 1: The box T (n) and a depiction of the event Ar(n).

Therefore, we can say that a vertex in T (n) is part of an infinite cluster
if and only if Al(n) ∪ Ar(n) ∪ At(n) ∪ Ab(n) occurs.

Since we have assumed that θ( 1
2
) > 0, every vertex in the first quadrant

of L
2 has a non-zero probability of being part of an open infinite cluster.

Let’s say the probability of v ∈ Z
2 being part of an infinite open cluster is

θ(v, 1
2
) > 0. Clearly this event is translation invariant so we consider θ(0, 1

2
).

By the FKG inequality, the probability that none of the n2 vertices of
T (n) are part of on infinite open cluster with probability upperbounded by
(1 − θ(0, ))n2

which tends to 0 as n → ∞. This is equivalent to saying that

P 1

2

(Al(n) ∪ Ar(n) ∪ At(n) ∪ Ab(n)) → 1 as n → ∞. (1)

Since Au(n) are identical events for u = l, r, t, b, P 1

2

(Au(n)) is the same

for u = l, r, t, b. This, along with (1) allows us to use the square root trick to
say that P 1

2

(Au(n)) → 1 as n → ∞, for u = l, r, t, b.
Therefore, we can choose an N such that

P 1

2

(Au(N)) >
7

8
for u = l, r, t, b.
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Now, we define T (n)d, in the dual lattice, to be {(x1, x2) + (1
2
, 1

2
) : 0 ≤

x1, x2 ≤ n}.
Event Al

d(n) is defined as the occurence of an infinite closed path from a
vertex on the left boundary of T (n)d, in the dual lattice, which doesn’t include
any other vertex of T (n)d. Events Ar

d(n), At
d(n) and Ab

d(n) are similarly
defined for the dual lattice.

Arguing along the same lines as above, we can say that there is an Nd

such that P 1

2

(Au
d(Nd)) > 7

8
, for u = l, r, t, b.

Let
A = Al(N∗) ∩ Ar(N∗) ∩ At

d(N
∗) ∩ Ab

d(N
∗),

where N∗ = max(N, Nd). In other words we are considering the event that
the left and right boundaries of T (n) have vertices which lie on infinite open
paths and the top and bottom boundaries of the dual box lie on infinite
closed paths.

Taking complements on both sides, we get

Ā = Al(N∗) ∪ Ar(N∗) ∪ At
d(N

∗) ∪ Ab
d(N

∗).

In terms of probability,

P 1

2

(A) ≤ P 1

2

(Al(N∗)) + P 1

2

(Ar(N∗)) + P 1

2

(At
d(N

∗)) + P 1

2

(Ab
d(N

∗)).

Note that because of the value of N ∗ chosen, P 1

2

(Au(N∗)) and P 1

2

(Au
d(N

∗))

are > 7
8

and P 1

2

(Au(N∗)) and P 1

2

(Au
d(N

∗)) are ≤ 1
8
, for u = l, r, t, b.

As a result, P 1

2

(A) ≤ 1
2

and P 1

2

(A) ≥ 1
2
.

Let us take a closer look at the event A. A occurs when there exist open
paths of infinite length from both the left and right boundary of T (N ∗),
which don’t intersect T (N ∗) at any other point and closed paths of infinite
length from both the top and bottom boundary of T (N ∗

d) in the dual lattice,
which don’t intersect T (N ∗

d) at any other point.
Since L

2 can have atmost 1 infinite open cluster, the infinite clusters that
vl and vr belong to must be the same i.e. vl and vr must be connected via
an open path. Similarly, the dual lattice can have atmost 1 infinite closed
cluster and hence vt and vb must be connected via a closed path in the dual
lattice. But, as shown in Figure 2 both of these cannot happen at the same
time since it would mean an open path crossing a closed path at some point
which cannot happen. Thus, P 1

2

(A) must be 0. But we have earlier shown
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vrvl

vt

vb

Figure 2: The infinite open cluster and the infinite closed cluster are unique.

that P 1

2

(A) ≥ 1
2
, under the assumption that θ( 1

2
) > 0. As a result, there is a

contradiction and the assumption is false. Therefore, θ( 1
2
) = 0 and hence

pc ≥
1

2
. (2)

For the second part of the proof, we shall prove the following claim.

Claim 11.3 If p < pc, then there is a positive probability that the origin of

the dual lattice is part of an infinite closed cluster.

Proof of Claim 11.3. Since p < pc, we are in the sub-critical phase and

χ(p) =

∞
∑

n=1

Pp(|C| ≥ n) < ∞.

Given a positive integer M , we define an event AM which occurs if there
exists an open path from (k, 0){for some k < 0} to (l, 0){for some l ≥ M},
called π, such that all vertices of π(except the terminals) lie strictly above
the horizontal axis.
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Since the open paths from (k, 0) to (l, 0) would be of length ≥ l + |k| ≥
l ≥ M , with the added constraint of lying above the horizontal axis, we get
the following inequality

Pp(AM) ≤ Pp

(

∞
⋃

l=M

{(l, 0) ↔ (k, 0)}
)

≤

∞
∑

l=M

Pp(|C(k,0)| ≥ l)

≤
∞
∑

l=M

Pp(|C| ≥ l)

where k < 0 is fixed. The second inequality follows from the fact that the
open cluster centered at (k, 0) would be of length ≥ l since the open path
from (k, 0) to (l, 0) would be of length ≥ l. The third inequality follows from
translational invariance.

Using the finiteness of χ(p) in the sub-critical phase, we can see that an
infinite number of terms sum up to a finite quatity. Thus, we can find an
M∗ such that

Pp(AM∗) ≤
∞
∑

l=M∗

Pp(|C| ≥ l) ≤
1

2
.

This implies that Pp(AM∗) > 1
2
.

Let L = {(m + 1
2
, 1

2
) : 0 ≤ m < M∗} and C(L) be the set of vertices

connected to L in the dual lattice through closed paths. If C(L) is assumed
to be finite, then using the same reasoning as in Lecture 3, we can say
that this closed finite cluster in the dual lattice will be contained within
an open circuit in the original (dual of the dual) lattice L

2. This enclosing
circuit will have the upper/lower half totally above/below the horizontal axis,
intersecting the axis at 2 points, say (k∗, 0) on the left, where k∗ < 0, and
(l∗, 0) on the right, where l∗ > M∗. Therefore, the upper half of the circuit
can act as an open path between the 2 terminals and the event A(M ∗) occurs
as a result. This implies that

{

|C(L)| < ∞
}

⇒ AM∗

Hence

Pp

(

|C(L)| < ∞
)

≤ Pp(AM∗) ≤
1

2
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and consequently

Pp

(

|C(L)| = ∞
)

≥
1

2
.

Now, since |L| = M ∗, by the Pigeonhole Principle we can say that, for
some x ∈ L,

Pp(x is part of an infinite closed cluster) ≥
1

2M∗
.

This, in turn, implies that

Pp(the origin of Ld is part of an infinite closed cluster) ≥
1

2M∗

> 0,

because of translational invariance. This proves the claim.
Since the origin is part of an infinite closed cluster with a positive prob-

abilty, the probability that there exists an infinite closed cluster in the dual
lattice must be 1. Also, the probabilty of an edge being open in the dual is
still p. Flipping the open and closed edges, we see that the edges are now
open with a probability 1− p and the infinite closed cluster will now become
an infinite open cluster. This implies that we are in the super-critical phase
at 1 − p. Thus the result of the claim can be interpreted as

p < pc ⇒ pc ≤ 1 − p

This implies that if 1
2

< pc, then pc ≤
1
2

which gives rise to a contradiction.
Therefore, pc ≤

1
2
. This along with (2) proves the theorem.
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