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In the subcritical phase we saw that the radius of the cluster containing
the origin decays exponentially. This is not true if p > pc since there is a
non-zero probability that the origin may be part of an infinite open cluster.
However, even in the supercritical phase we expect to find finite open clusters
along with the infinite open cluster. In this lecture we will show that the
radius of these finite clusters decays exponentially.

We will proceed in two stages. First, we will show that for 0 < p < 1,
there is a σ(p) < ∞ such that Pp(0 ↔ ∂B(n) ∩ |C| < ∞) is upperbounded
by a quantity which contains the term e−nσ(p), where C is, as before, the
open cluster containing the origin. In the second stage we will show that for
p > pc, this σ(p) is strictly positive, thereby proving an exponential decay in
the probability.

10.1 An upper bound for all values of p.

Theorem 10.1 Suppose that 0 < p < 1. The limit

σ(p) = lim
n→∞

{

−1

n
log Pp(0 ↔ ∂B(n) ∩ |c| < ∞)

}

exists and satisfies σ(p) < ∞. Furthermore, there exists a constant A(p, d)
which is finite for d ≥ 2, 0 < p < 1, such that

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≤ A(p, d)nde−nσ(p) (1)

for all n ≥ 0.

Proof. Let us begin with some notation. For each dimension i = 1, . . . , d,
we denote the maximum and the minimum values reached by the vertices of
C in that dimension by Ri = max{xi : x ∈ C} and Li = min{xi : x ∈ C}.
Di = Ri − Li is the width of C in the ith coordinate. And we define the
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diameter of C, denoted diam(C) as the maximum over the widths in the
different dimensions i.e.

diam(C) = max{Di : 1 ≤ i ≤ d}.

Our proof will involve writing out a recurrence relating the probability
that the diameter is at least some value to the product of the probabilities
of the diameter being some smaller values. Once we have this recurrence,
we will be able to take logs and apply the subadditive limit theorem. Let us
first prove this recurrence.

Lemma 10.2 Suppose 0 < p < 1. For m, n ≥ 0

Pp(diam(C) = m+n+2) ≥
p2(1 − p)2d−2

d2(2n + 1)d
·Pp(diam(C) = m)·Pp(diam(C) = n).

(2)

Proof of Lemma 10.2. In order to lower bound Pp(diam(C) = m+n+2) we
will focus on a particular way of constructing a cluster of diameter m+n+2:
We will place a rightmost vertex of an open cluster with Di = m two hops
away from a leftmost vertex of an open cluster with Di = n, then we will
open the two edges separating these two clusters. The probability of such a
structure existing will be our lower bound.

Let us begin by noting that

Pp(diam(C) = k) ≥ Pp(D1 = diam(C) = k). (3)

Also, since all the dimensions are symmetric and at least one of them must
have width equal to the diameter

Pp(diam(C) = k) ≤
d
∑

i=1

Pp(Di = diam(C) = k)

≤ d · Pp(D1 = diam(C) = k).

(4)

Now, note that if D1 = diam(C) = k, then C must be contained in B(k),
since the origin is in C. This means that any leftmost vertex of C in the 1st
dimension must also belong to B(k). Hence

Pp(A leftmost vertex of C is contained in B(k) ∩ D1 = diam(C) = k)

= Pp(D1 = diam(C) = k).
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This means there must be a vertex x∗ in B(k) such that

Pp(x
∗ is a leftmost vertex of C ∩ D1 = diam(C) = k)

≥
1

|B(k)|
Pp(D1 = diam(C) = k).

The vertex x∗ is, therefore, a leftmost vertex of an open cluster with diameter
k whose width is maximal in the first coordinate. Since this property is
translation invariant, the probability that the origin has this property is the
same as the probability that x∗ has this property. So, we can say that

Pp(D1 = diam(C) = k ∩ L1 = 0 ∩ R1 = k) ≥
1

|B(K)|
Pp(D1 = diam(C) = k)

And further using (4), we get

Pp(D1 = diam(C) = k ∩ L1 = 0 ∩ R1 = k) ≥
1

d|B(k)|
Pp(diam(C) = k). (5)

Now, let us pick a rightmost vertex of C, breaking ties in some predetermined
way. Let this rightmost vertex be x. Consider the event that x+(2, 0, . . .) is

0

m n

x + (2, 0, . . .)x

Figure 1: Juxtaposing two open clusters of width m and n.

a leftmost vertex of the open cluster containing it, and that this open cluster
has diameter n and its width is maximal in the first coordinate. Figure 1
illustrates this event. If we now close the 2d−2 edges incident to x+(1, 0, . . .)
and open the two edges along the 1st coordinate, we get a cluster of diameter
m + n + 2, with maximum width only along the 1st dimension.

So, in order to lower bound the probability of an open cluster having
diameter m + n + 2 we consider the co-occurence of three events:
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• the cluster containing the origin has width m in the first coordinate,

• the vertex x + (2, 0, . . .), two hops away from a rightmost vertex x of
C, is a leftmost vertex of the cluster C(x+(2, 0, . . .)) containing it, and
diam(C(x+(2, 0, . . .))) = n with maximum width in the 1st coordinate
and

• the edges from x to x+(1, 0, . . .) and x+(1, 0, . . .) to x+(2, 0, . . .) are
open and all other edges incident to x + (1, 0, . . .) are closed.

The inequality (3) gives us a way of lower bounding the probability of the
first of these three events. the inequality (5) allows us to lowerbound the
probability of the second event, using translation invariance to apply it to
x + (2, 0, . . .) rather than the origin. The probability for the third event we
can write down explicitly. Note also that these three events pertain to three
disjoint sets of edges. Hence we can put all of this together to say

Pp(diam(C) = m + n + 2) ≥
1

d
Pp(diam(C) = m) · p2(1 − p)2d−2

·
1

d|B(n)|
· Pp(diam(C) = n).

And since |B(n)| = (2n + 1)d the lemma follows.
Now, define a sequence δ(k) = − log Pp(diam(C) = k). Taking logs on

both sides of (2) we get

δ(m + n + 2) ≤ δ(m) + δ(n) + log

{

d2(2n + 1)d

p2(1 − p)(2d − 2)

}

. (6)

Applying a variant of the Subadditive Limit Theorem (described in Sec-
tion 10.3), we get that since the third term on the righthand side of (6)
grows asymptotically slower than n, the limit

σ(p) = lim
n→∞

{

δ(n)

n

}

exists and

δ(k) ≥ (k + 2)σ(p) − log

{

d2(2k + 1)d

p2(1 − p)(2d − 2)

}

.

This gives us

Pp(diam(C) = k) ≤
d2(2k + 1)d

p2(1 − p)(2d − 2)
· e−(k+2)σ(p). (7)
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Note now that if the origin is connected to ∂B(n) then the diameter of C

must be at least n and if |C| is finite then the diameter of C must be finite.
Hence

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≤ Pp(n ≤ diam(C) < ∞).

Using (7) we get

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≤
∞
∑

k=n

d2(2k + 1)d

p2(1 − p)(2d − 2)
· e−(k+2)σ(p)

≤
d2(2n + 1)d

p2(1 − p)(2d − 2)
· e−(n+2)σ(p) · γ (8)

where γ is some finite quantity. This satisfies the requirement (1) of the
statement of the theorem. Further, taking logs on both sides we get

−
1

n
log(Pp(0 ↔ ∂B(n) ∩ |C| < ∞)) ≥ σ(p) +

1

n
γ′ (9)

where γ′ is some finite quantity independent of n.
Also if the origin is a leftmost vertex of a cluster with diam = n which

has width n in the 1st coordinate, then {0 ↔ ∂B(n)} and the finiteness of
|C| are both implied. So

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≥ Pp(diam(C) = n ∩ L1 = 0 ∩ R1 = n).

Using (5) we get

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≥
1

d(2n + 1)d
Pp(diam(C) = n).

Taking logs on both sides we get

−
1

n
log(Pp(0 ↔ ∂B(n) ∩ |C| < ∞))

Now, using (8) we get

−
1

n
log(Pp(0 ↔ ∂B(n) ∩ |C| < ∞)) ≤

log d

n
+

d log(2n + 1)

n

−
1

n
log(Pp(diam(C) = n))
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Recalling that

σ(p) = lim
n→∞

{

− log Pp(diam(C) = n)

n

}

we get that as n → ∞

−
1

n
log(Pp(0 ↔ ∂B(n) ∩ |C| < ∞)) ≤ σ(p). (10)

This along with (9) gives us the result.

10.2 Decay in the supercritical phase

We now proceed to look specifically at the supercritical phase. We will
show that σ(p) > 0 when p > pc and d ≥ 3, thereby proving that in the
supercritical phase the size of a finite cluster decays exponentially.

The argument depends on an important feature of percolation in higher
dimensions: the critical probability of infinite slabs of Z

d is the same as
the critical probability of Z

d. The proof proceeds by arguing that if C has
large radius but is finite, that means C intersects a large number of infinite
slabs without intersecting the infinite open cluster contained in any of these
slabs. And this is an event with an exponentially decreasing probability since
the percolation processes within each of these slabs are independent of each
other. Now, let us proceed to formalize this.

Theorem 10.3 If p > pc then σ(p) > 0, for d ≥ 3.

Proof. Let H(n) be the hyperplane {x ∈ Z
d : x1 = n} and define an event

Gn : {C is finite } ∩ {C intersects H(n)}.

Since B(n) has 2d faces

Pp(Gn) ≤ Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≤ 2d · Pp(Gn).

If we show that, when p > pc, there is a γ(p) > 0 such that Pp(Gn) ≤ e−nγ(p)

for all n, then

Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≤ 2de−nγ(p).
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Which in turn would mean that

−
1

n
log Pp(0 ↔ ∂B(n) ∩ |C| < ∞) ≥

log 2d

n
+ γ(p).

Taking limit n → ∞ on both sides we get

σ(p) ≥ γ(p)

which would prove the theorem. Hence, show the existence of such a γ(p) > 0
is sufficient for us. So, let us proceed to show this.

Let us denote by R(k) the d − 1-dimensional slab of width k in the first
coordinate i.e.

Rk = {x ∈ Z
d : 0 ≤ x1 ≤ k}.

In the following, when we write only pc it will mean pc(Z
d). For everything

else we will mention the structure whose critical probability we are talking
about.

Since R(k) is an infinite graph, it experiences a critical phenomenon as
well. And it is clear, since it is fully contained in Z

d that pc(Rk) > pc. Since
Rk ↑ Z

d as k → ∞, pc(Rk) → pc. This motivates the result we state next.

Theorem 10.4 If p > pc, there is an integer k such that p > pc(Rk).

In other words, if p > pc, there may be several values of k for which p < pc(Rk)
but we will eventually find a large enough value of k such that p > pc(Rk).
We omit the proof of this theorem, simply stating that we will use the value
of k given by this theorem in the rest of the proof i.e. a value for which the
slab R(k) is in the supercritical phase. Let us now view Z

d as a set of copies
of the slab Rk. Define

Rk(i) = {x ∈ Z
d : (i − 1)k ≤ x1 ≤ ik}.

We will argue that if Gnk occurs for some n ≥ 1, then each Rk(i) for 1 ≤ i ≤ n

is traversed by an open path from the origin (see Figure 2) and this open
path does not intersect any infinite open cluster in each such region because
the origin is part of a finite cluster. Since p > pc, each region contains an
infinite cluster, hence the probability of avoiding such a cluster is strictly less
than 1 (call it α(p, k)). There are n such regions. So

Pp(Gnk) < αn.

Let us now formalize this argument.
We view the cluster C as being “constructed” in the following manner:
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0

Rk(1)

k

Rk(2)

2k nk

Figure 2: Gnk requires traversing n slabs to get to H(nk).

• Order the edges of E
d in some arbitrary (but deterministic) way.

• Construct an increasing sequence C1, C2.... of (random) subgraphs of
L

d. C will be the limit of this sequence.

• C1 = 0.

• From Cm we construct Cm+1 by adding the earliest open edge which lies
in the edge boundary of Cm, if such an edge exists. i.e. Cm+1 = Cm ∪
{ej} where j = min{i : ei 6∈ Cm, ei is open and incident to a vertex of Cm}.

For some m, if Cm = C then we define Cl = C for all l ≥ m so that

C = lim
m→∞

Cm.

Note that the event {Cm = Σ} (for some connected subgraph Σ of L
d) does

not depend on any edge both of whose end vertices are outside Σ. Also,
if x ∈ C , there is a (random) integer m = m(x) such that x lies in Cm

(regardless of whether C is finite or infinite).
Now, returning to the proof, construct a sequence of vertices v1, v2, . . .

whose first element v1 = 0 i.e. the origin. If mi is the smallest value of m

for which Cm contains a vertex of Rk(i) then let vi be that first vertex of
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Rk(i) encountered by the sequence Cm i.e. the only element of the singleton
Rk(i)∩Cmi

. So we get the seqence v1, v2, . . . , vT of the “first” vertex of C in
each slab, where

T = sup{i : C ∩ Rk(i) 6= ∅}.

For any region R, denote by θ(p, v; R) the probability that v belongs to an
infinite open cluster of R. Recall that we chose k such that

p > pc(Rk) = sup{p : θ(p, 0; Rk) = 0}

Hence θ(p, 0; Rk) > 0. Also, let us define event Ej(x, i) to be the event that
vertex x does not lie in an infinite cluster of Rj(i).

Now let us consider a positive integer n = kr + s, 0 ≤ s ≤ k. If Gn occurs
then T ≥ r and vi does not lie in an infinite cluster of Rk(i) for 1 ≤ i ≤ r.
In other words

Pp(Gn) ≤ Pp

(

{T ≥ r} ∩

{

r
⋂

i=1

Ek(vi, i)

})

.

For brevity, let us say

Aj = {T ≥ r} ∩

{

r
⋂

i=1

Ek(vi, i)

}

.

So, we have that Pp(Gn) ≤ Pp(Ar) = Pp(Ar | Ar−1) · Pp(Ar−1). So, let us
turn and look at the event {Aj | Aj−1}. For the event Aj , any of the vertices
of H(j − 1)k can be vj , so taking the union over all these choices of vj we
can say that {Aj | Aj−1} is

⋃

v∈H((j−1)k)

{vj = v | Aj−1} ∩ {Ek(v, j) | Aj−1} ∩ {T ≥ j | Aj−1}.

Hence

Pp(Aj |Aj−1) ≤
∑

v∈H((j−1)k)

Pp(Ek(v, j) | vj = v, T ≥ j, Aj−1)

·Pp(vj = v | T ≥ j, Aj−1) · Pp(T ≥ j | Aj−1).

(11)

Since v being in an infinite open cluster of Rk(j) has nothing to do with the
event Aj−1 (by our construction of C). Also T ≥ j depends only on the
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events occuring in the slabs before the jth one, so does not affect the event
Ek(v, j). Hence

Pp(Ek(v, j) | vj = v, T ≥ j, Aj−1) ≤ (1 − θ(p, v; Rk(j))).

We substitute this for the first term on the right side of (11) and upper bound
the third term by 1 to get

Pp(Aj | Aj−1) ≤
∑

v∈H((j−1)k)

(1 − θ(p, v; Rk(j))) · Pp(vj = v | T ≥ j, Aj−1).

if T ≥ j then one of the vertices of H((j − 1)k) is chosen as vj . Additionally
translating the probability θ(p, v; Rk(j)) to the origin

Pp(Aj | Aj−1) ≤ (1 − θ(p, 0; Rk(j))).

Using this bound we get

Pp(Gn) ≤ Pp(Ar | Ar−1) · Pp(Ar−1 | Ar−2) · · ·Pp(A2 | A1) · Pp(A1)

≤ (1 − θ(p, 0; Rk(j)))
r.

Since θ(p, 0; Rk) > 0, we get

Pp(Gn) ≤ e−rγ(p)

where
γ(p) = − log (1 − θ(p, 0; Rk)) > 0.

Since n ≤ (r + 1)k , so r ≥ n
k
− 1 giving

Pp(Gn) ≤ exp

{

−n
γ(p)

k
+ γ(p)

}

.

which completes the proof.

10.3 Appendix: A variant of the Subadditive Limit

Theorem

We state without proof a variant of the Subadditive Limit Theorem that is
useful here.
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Theorem 10.5 If there is a sequence (xr : r ≥ 1) such that for all m, n ≥ 1

xm+n+2 ≤ xm + xn + gn

and if
gn
n → 0 as n → ∞ then

λ = lim
xr

r

exists, with λ < ∞ and, for all r

xr ≥ (r + 2)λ − gr.
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